Advertisement

Lanthanide-Labeled DNA

  • Paul R. Selvin
Chapter
Part of the Topics in Fluorescence Spectroscopy book series (TIFS, volume 7)

Conclusion

Lanthanides, as alternative probes to conventional fluorophores, can lead to enhanced sensitivity in applications where autofluorescence is a problem. Multiple labeling with lanthanide chelates have been shown to be an effective method for further increases in sensitivity. These probes, being nonisotopic, avoid the many practical problems associated with radioactive probes. Lanthanide probes are particularly advantageous in resonance energy transfer, whether for measuring distances in biocomplexes or when used to generate new lifetime tailored dyes.

Keywords

Fluorescence Resonance Energy Transfer Resonance Energy Transfer Tyramide Signal Amplification Fluorescence Energy Transfer Lanthanide Chelate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bunzli, J.-C. G. Luminescent probes. In Lanthanide Probes in Life, Chemical and Earth Sciences, Theory and Practice, J.-C. G. Bunzli and G. R. Choppin, eds. New York: Elsevier, 1989, pp. 219–293.Google Scholar
  2. 2.
    Diamandis, E. P. Time-resolved fluorometry in nucleic acid hybridization and Western blotting techniques. Electrophoresis 14, 866–875, 1993.CrossRefGoogle Scholar
  3. 3.
    Diamandis, E. P., and Christopoulos, T. K. Europium chelate labels in time-resolved fluorescence immunoassays and DNA hybridization assays. Anal. Chem. 62, 1149A–1157A, 1990.Google Scholar
  4. 4.
    Dickson, E. F. G., Pollak, A., and Diamandis, E. P. Time-resolved detection of lanthanide luminescence for ultrasensitive bioanalytical assays. J. Photochem. Photobiol B: Biology 27, 3–19, 1995.Google Scholar
  5. 5.
    Dickson, E. F. G., Pollak, A., and Diamandis, E. P. Ultrasensitive bioanalytical assays using time-resolved fluorescence detection. Pharmac. Ther. 66, 207–235, 1995.Google Scholar
  6. 6.
    Lövgren, T, and Iitia, A. Detection of lanthanide chelates by time-resolved fluorescence. In Nonisotopic Probing, Blotting, and Sequencing, L. J. Kricka, ed. San Diego, CA: Academic Press, 1995, pp. 331–376.Google Scholar
  7. 7.
    Sammes, P. G., and Yahioglu, G. Modern bioassays using metal chelates as luminescent probes. Natural Products Reports 13, 1–28, 1996.CrossRefGoogle Scholar
  8. 8.
    Selvin, P. R. Principles and biophysical applications of luminescent lanthanide probes. Annu. Rev. Biophys. Biomolec. Struct. 31, 275–302, 2002.Google Scholar
  9. 9.
    Selvin, P. R. Luminescent lanthanide chelates for improved resonance energy transfer and applications to biology. In Applied Fluorescence in Chemistry, Biology and Medicine, W. Rettig, B. Strehmenl, S. Schrader, and H. Seifert, eds. New York: Springer Verlag, 1999, pp. 457–487.Google Scholar
  10. 10.
    Soini, E., and Lövgren, T. Time-resolved fluorescence of lanthanide probes and applications in biotechnology. CRC Crit. Rev. Anal. Chem. 18, 104–154, 1987.Google Scholar
  11. 11.
    Weissman, S. I. Intramolecular energy transfer: The fluorescence of complexes of europium. J. Chem. Phys. 10, 214, 1942.CrossRefGoogle Scholar
  12. 12.
    Kwiatkowski, M., Samiotaki, M., Lamminmaki, U., Mukkala, V.-M., and Landegren, U. Solid-phase synthesis of chelate-labelled oligonucleotides: application in triple-color ligase-mediated gene analysis. Nucleic Acids Res. 22, 2604–2611, 1994Google Scholar
  13. 13.
    Samiotaki, M., Kwiatkowski, M., Ylitalo, N., and Landegren, U. Seven-color time-resolved fluorescence hybridization analysis of human papilloma virus types. Anal. Biochem. 253, 156–161, 1997.CrossRefGoogle Scholar
  14. 14.
    Lehn, J. M. Comprehensive Supramolecular Chemistry. New York: Pergamon/Elsevier, 1996.Google Scholar
  15. 15.
    Alpha, B., Ballardini, R., Balzani, V., Lehn, J.-M., Perathoner, S., and Sabbatini, N. Antenna effect in luminescent lanthanide cryptates: A photophysical study. Photochem. Photobiol 52, 299–306, 1990.Google Scholar
  16. 16.
    Mathis, G. Rare earth cryptates and homogeneous fluoroimmunoassays with human sera. Clin. Chem. 39, 1953–1959, 1993.Google Scholar
  17. 17.
    Mathis, G. Probing molecular interactions with homogeneous techniques based on rare earth cryptates and fluorescence energy transfer. Clin. Chem. 41, 1391–1397, 1995.Google Scholar
  18. 18.
    Mathis, G., Socquet, F., Viguier, M., and Darbouret, B. Homogeneous immunoassays using rare earth cryptates and time resolved fluorescence: Principles and specific advantages for tumor markers. Anticancer Res. 17, 3011–3014, 1997.Google Scholar
  19. 19.
    Prat, O., Lopez, E., and Mathis, G. Europium(III) cryptate: A fluorescent label for the detection of DNA hybrids on solid support. Anal. Biochem. 195, 283–289, 1991.CrossRefGoogle Scholar
  20. 20.
    Saha, A. K., Kross, K., Kloszewski, E. D., Upson, D. A., Toner, J. L., Snow, R. A., Black, C. D. V., and Desai, V. C. Time-resolved fluorescence of a new europium chelate complex: Demonstration of highly sensitive detection of protein and DNA samples. J. Am. Chem. Soc. 115: 11032–11033, 1993.CrossRefGoogle Scholar
  21. 21.
    Bailey, M. P., Rocks, B. F., and Riley, C. (1984) Terbium chelate for use as a label in fluorescent immunoassays. Analyst 109, 1449–1450, 1984.CrossRefGoogle Scholar
  22. 22.
    Canfi, A., Bailey, M. P., and Rocks, B. F. Fluorescent terbium chelatesderived from diethylenetriaminepentaacetic acid and heterocyclic compounds. Analyst 114, 1405–1406, 1989.Google Scholar
  23. 23.
    Li, M., and Selvin, P. R. Luminescent lanthanide polyaminocarboxylate chelates: The effect of chelatestructure. J. Am. Chem. Soc. 117, 8132–8138, 1995.Google Scholar
  24. 24.
    Chen, J., and Selvin, P. R. Synthesis of 7-amino-4-trifluoromethyl-2-(lH)-quinolinone and its use as an antenna molecule for luminescent europium polyaminocarboxylate chelates. In press.Google Scholar
  25. 25.
    Savitsky, A. P., Chydinov, A. V, and Krilova, S. M. Novel fluorescent chelate for Eu. Presented at Advances in Fluorescence Sensing Technology II, San Jose, CA, 1995.Google Scholar
  26. 26.
    Hemmilä, I., Mukkala, V.-M., and Takalo, H. J. Development of luminescent lanthanide chelate labels for diagnostic assays. J. Alloys Compounds 249: 158–162, 1997.Google Scholar
  27. 27.
    Xiao, M., and Selvin, P. R. Quantum yields of luminescent lanthanide chelates and far-red dyes measured by resonance energy transfer. J. Am. Chem. Soc. 123, 7067–7073, 2001.CrossRefGoogle Scholar
  28. 28.
    Yamada, S., Miyoshi, F., Kano, K., and Ogawa, T. Highly sensitive laser fluorimetry of europium(III) with l,1,1-trifluoro-4-(2-thienyl)-2,4-butanedione. Anal. Chim. Acta 127, 195–198, 1981.CrossRefGoogle Scholar
  29. 29.
    Siitari, H., Hemmila, I., Soini, E., Lövgren, T., and Koistinen, V. Detection of hepatitis B surface antigen using time-resolved fluoroimmunoassay. Nature 301, 258–260, 1983.CrossRefGoogle Scholar
  30. 30.
    Xu, Y. Y, Pettersson, K., Blomberg, K., Hemmila, I., Mikola, H., and Lövgren, T. Simultaneous quadruple-label fluorometric immunoassay of thyroid-stimulating hormone, 17 alpha-hydroxyprogesterone, immunoreactive trypsin, and creatine kinase MM isoenzyme in dried blood spots. Clin. Chem. 38, 2038–2043, 1992.Google Scholar
  31. 31.
    Landegren, U., Kaiser, R., Caskey, C. T., and Hood, L. DNA diagnostics—Molecular techniques and automation. Science 242, 229–237, 1988.Google Scholar
  32. 32.
    Dahlén, P., Liukkonen, L., Kwiatkowski, M., Hurskainen, P., Iitiä, A., Siitari, H., Ylikoski, J., Mukkala, V. M., and Lövgren, T. Europium-labeled oligonucleotide hybridization probes-Preparation and properties. Bioconj. Chem. 5, 268–272, 1994.Google Scholar
  33. 33.
    Alpha-Bazin, B., Bazin, H., Preaudat, M., Trinquet, E., and Mathis, G. Rare earth cryptates and TRACE technology as tools for probing molecular interactions in biology. New Trends Fluoresc. Spectrosc.: Appl. Chem. Life Sci. 1, 439–455, 2001.Google Scholar
  34. 34.
    Takalo, H., Mukkala, V.-M., Mikola, H., Liitti, P., and Hemmila, I. Synthesis of europium(III) chelates suitable for labeling of bioactive molecules. Bioconj. Chem. 5, 278–282, 1994.Google Scholar
  35. 35.
    Sieving, P. F., Watson, A. D., and Rocklage, S. M. Preparation and characterization of paramagnetic polychelates and their protein conjugates. Bioconj. Chem. 1, 65–71, 1990.Google Scholar
  36. 36.
    Canfi, A., Bailey, M. P., and Rocks, B. F. Multiple labelling of immunoglobulin G, albumin and testosterone with a fluorescent terbium chelate for fluorescence immunoassays. Analyst 114, 1908–1911, 1989.Google Scholar
  37. 37.
    Moronne, M. M. Development of X-ray excitable luminescent probes for scanning X-ray microscopy. Ultramicmscopy 77, 23–36, 1999.Google Scholar
  38. 38.
    Lamture, J. B., and Wensel, T. G. Intensely luminescent immunoreactive conjugates of proteins and dipicolinate-based polymeric Tb (III) chelates. Bioconj. Chem. 6: 88–92, 1995.Google Scholar
  39. 39.
    Marriott, G., Heidecker, M., Diamandis, E. P., and Yan-Marriott, Y. Time-resolved delayed luminescence image microscopy using a europium ion chelate complex. Biophys. J. 67, 957–965, 1994.Google Scholar
  40. 40.
    de Haas, R. R., Verwoerd, N. P., van der Corput, M. P., van Gijlswijk, R. P., Siitari, H., and Tanke, H. J. The use of peroxidase-mediated deposition of biotin-tyramide in combination with time-resolved fluorescence imaging of europium chelate label in immunohistochemistry and in situ hybridization. J. Histochem. Cytochem. 44, 1091–1099, 1996.Google Scholar
  41. 41.
    Christopoulos, T. K., and Diamandis, E. P. Enzymatically amplified time-resolved fluorescence immunoassay with terbium chelates. Anal. Chem. 64, 342–346, 1992.CrossRefGoogle Scholar
  42. 42.
    Chiu, N. H., Christopoulos, T. K., and Peltier, J. Sandwich-type deoxyribonucleic acid hybridization assays based on enzyme amplified time-resolved fluorometry. Analyst 123, 1315–1319, 1998.CrossRefGoogle Scholar
  43. 43.
    Evangelista, R. A., Wong, H. E., Templeton, E. F., Granger, T., Allore, B., and Pollak, A. Alkyl-and aryl-substituted salicyl phosphates as detection reagents in enzyme-amplified fluorescence DNA hybridization assays on solid support. Anal. Biochem. 203, 218–26, 1992.CrossRefGoogle Scholar
  44. 44.
    Templeton, E. F., Wong, H. E., Evangelista, R. A., Granger, T., and Pollak, A. Time-resolved fluorescence detection of enzyme-amplified lanthanide luminescence for nucleic acid hybridization assays. Clin. Chem. 37, 1506–1512, 1991.Google Scholar
  45. 45.
    Ioannou, P. C., and Christopoulos, T. K. Two-round enzymatic amplification combined with time-resolved fluorometry of Tb3+ chelates for enhanced sensitivity in DNA hybridization assays. Anal. Chem. 70, 698–702, 1998.CrossRefGoogle Scholar
  46. 46.
    Galvan, B., Christopoulos, T. K., and Diamandis, E. P. Detection of prostate-specific antigen mRNA by reverse transcription polymerase chain reaction and time-resolved fluorometry. Clin. Chem. 41, 1705–1709, 1995.Google Scholar
  47. 47.
    Galvan, B., and Christopoulos, T. K. Quantitative reverse transcriptase-polymerase chain reaction for prostate-specific antigen mRNA. Clin. Biochem. 30, 391–397, 1997.CrossRefGoogle Scholar
  48. 48.
    Halonen, P., Rocha, E., Hierholzer, J., Holloway, B., Hyypia, T., Hurskainen, P., and Pallansch, M. Detection of enteroviruses and rhinoviruses in clinical specimens by PCR and liquid-phase hybridization. J. Clin. Microbiol. 33, 648–653, 1995.Google Scholar
  49. 49.
    Dahlén, P., Iitiä, A., Mukkala, V. M., Hurskainen, P., and Kwiatkowski, M. The use of europium (Eu3+) labelled primers in PCR amplification of specific target DNA. Mol. Cell. Probes 5, 143–149, 1991.Google Scholar
  50. 50.
    Ylikoski, A., Sjoroos, M., Lundwall, A., Karp, M., Lovgren, T., Lilja, H., and Iitia, A. Quantitative reverse transcription-PCR assay with an internal standard for the detection of prostatespecific antigen mRNA. Clin. Chem. 45, 1397–1407, 1999.Google Scholar
  51. 51.
    Iitia, A., Hogdall, E., Dahlen, P., Hurskainen, P., Vuust, J., and Siitari, H. Detection of mutation delta F508 in the cystic fibrosis gene using allele-specific PCR primers and time-resolved fluorometry. PCR Methods Appl. 2, 157–162, 1992.Google Scholar
  52. 52.
    Ried, T., Baldini, A., Rand, T. C., and Ward, D. C. Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy. Proc. Natl. Acad. Sci. USA 89, 1388–1392, 1992.Google Scholar
  53. 53.
    Speicher, M. R., Gwyn, B. S., and Ward, D. C. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nature Genet. 12, 368–375, 1996.CrossRefGoogle Scholar
  54. 54.
    Sjoroos, M., Iitia, A., Ilonen, J., Reijonen, H., and Lovgren, T. Triple-label hybridization assay for type-1 diabetes-related HLA alleles. Biotechniques 18, 870–877, 1995.Google Scholar
  55. 55.
    Beverloo, H. B., van Schadewijk, A., Zijlmans, H. J., Verwoerd, N. P., Bonnett, J., Vrolijk, H., Tanke, and H. J. A comparison of the detection sensitivity of lymphocyte membrane antigens using fluorescein and phosphor immunoconjugates. J. Histochem. Cytochem. 41, 719–725, 1993.Google Scholar
  56. 56.
    Marriott, G., Clegg, R. M., Arndt-Jovin, D. J., and Jovin, T. M. Time resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging. Biophys. J. 60, 1374–1387, 1991.CrossRefGoogle Scholar
  57. 57.
    Tanke, H. J., De Haas, R. R., Sagner, G., Ganser, M., and van Gijlswijk, R. P. Use of platinum coproporphyrin and delayed luminescence imaging to extend the number of targets FISH karyotyping. Cytometry 33, 453–459. 1998.CrossRefGoogle Scholar
  58. 58.
    Verwoerd, N. P., Hennink, E. J., Bonnet, J., Van der Geest, C. R. G., and Tanke, H. J. Use of ferroelectric liquid crystal shutters for time-resolved fluorescence microscopy. Cytometry 16, 113–117, 1994.CrossRefGoogle Scholar
  59. 59.
    Hennink, E. J., de Haas, R., Verwoerd, N. P., and Tanke, H. J. Evaluation of a time-resolved fluorescence microscope using a phosphorescent Pt-porphine model system. Cytometry 24, 312–320, 1996.CrossRefGoogle Scholar
  60. 60.
    Periasamy, A., Siadat-Pajouh, M., Wodnicki, P., Wang, X. F., and Herman, B. Time-gated fluorescence microscopy in clinical imaging. Microsc. Anal. 11, 33–35, 1995.Google Scholar
  61. 61.
    Seveus, L., Vaisala, M., Hemmila, I., Kojola, H., Roomans, G. M., and Soini, E. Use of fluorescent europium chelates as labels in microscopy allows glutaraldehyde fixation and permanent mounting and leads to reduced autofluorescence and good long-term stability. Microsc. Res. Tech. 28, 149–154, 1994.Google Scholar
  62. 62.
    Seveus, L., Vaisala, M., Syrjanen, S., Sandberg, M., Kuusisto, A., Harju, R., Salo, J., Hemmilä, I., Kojola, H., and Soini, E. Time-resolved fluorescence imaging of europium chelate label in immunohistochemistry and in situ hybridization. Cytomelry 13, 329–338, 1992.Google Scholar
  63. 63.
    Bjartell, A., Laine, S., Pettersson, K., Nilsson, E., Lövgren, T., and Lilja, H. Time-resolved fluorescence in immunocytochemical detection of prostate-specific antigen in prostatic tissue sections. Histochem. J. 31, 45–52, 1999.CrossRefGoogle Scholar
  64. 64.
    Mantrova, E. Y., Demcheva, M. V., and Savitsky, A. P. Universal phophorescence immunoassay. Anal. Biochem. 219, 109–114, 1994.CrossRefGoogle Scholar
  65. 65.
    de Haas, R. R., van Gijlswijk, R. P., van der Tol, E. B., Zijlmans, H. J., Bakker-Schut, T., Bonnet, J., Verwoerd, N. P., and Tanke, H. J. Platinum porphyrins as phosphorescent label for time-resolved microscopy. J. Histochem. Cytochem. 45, 1279–1292, 1997.Google Scholar
  66. 66.
    Lakowicz, J. R. Principles of Fluorescence Spectroscopy. New York: Kluwer Academic/Plenum, 1999.Google Scholar
  67. 67.
    Cantor, C. R., and Schimmel, P. R. Biophysical Chemistry. San Francisco: W. H. Freeman, 1980.Google Scholar
  68. 68.
    Clegg, R. M. Fluorescence resonance energy transfer. Curr. Opin. Biotech. 6, 103–110, 1995.Google Scholar
  69. 69.
    Clegg, R. M. Fluorescence resonance energy transfer. In Fluorescence Imaging Spectroscopy and Microscopy, X. F. Wang and B. Herman, eds. New York: John Wiley & Sons, 1996, pp. 179–251.Google Scholar
  70. 70.
    van der Meer, B. W., Coker, G., III, and Chen, S. Y. Resonance Energy Transfer: Theory and Data. New York: VCH Publishers, 1994.Google Scholar
  71. 71.
    dos Remedios, C. G., and Moens, P. D. J. Fluorescence resonance energy transfer-Applications in protein chemistry. In Resonance Energy Transfer, D. L. Andrews and A. A. Demidov, eds. Chichester, UK: John Wiley and Sons, 1999, pp. 1–64.Google Scholar
  72. 72.
    Fairclough, R., H., and Cantor, C., R. The use of singlet-singlet energy transfer to study macromolecular assemblies. Methods Enzymol. 48, 347–379, 1978.Google Scholar
  73. 73.
    Herman, B. Resonance energy transfer microscopy. Methods Cell. Biol. 30, 219–243, 1989.Google Scholar
  74. 74.
    Selvin, P. R. Fluorescence resonance energy transfer. Methods Enzymol. 246, 300–334, 1995.Google Scholar
  75. 75.
    Stryer, L. Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819–846, 1978.CrossRefGoogle Scholar
  76. 76.
    Blomberg, K., Hurskainen, P., and Hemmila, I. (1999) Terbium and rhodamine as labels in a homogeneous time-resolved fluorometric energy transfer assay of the B subunit of human chorionic gonadotropin in serum. Clin. Chem. 45, 855–861, 1999.Google Scholar
  77. 77.
    Burmeister-Getz, E., Cooke, R., and Selvin, P. R. Luminescence resonance energy transfer measurements in myosin. Biophys. J. 75, 2451–2458, 1998.Google Scholar
  78. 78.
    Root, D. D. In situ molecular association of dystrophin with actin revealed by sensitized emission immuno-resonance energy transfer. Proc. Natl. Acad. Sci. USA 94, 5685–5690, 1997.CrossRefGoogle Scholar
  79. 79.
    Stenroos, K., Hurskainen, P., Eriksson, S., Hemmila, I., Blomberg, K., and Lindqvist, C. Homogeneous time-resolved IL-2-IL-2R alpha assay using fluorescence resonance energy transfer. Cytokine 10, 495–499, 1998.CrossRefGoogle Scholar
  80. 80.
    Xiao, M., Li, H., Snyder, G. E., Cooke, R., G. Yount, R., and Selvin, P. R. Conformational changes between the active-site and regulatory light chain of myosin as determined by luminescence resonance energy transfer: The effect of nucleotides and actin. Proc. Natl. Acad. Sci. USA 95, 15309–15314, 1998.Google Scholar
  81. 81.
    Xu, J., and Root, D. D. Domain motion between the regulatory light chain and the nucleotide site in skeletal myosin. J. Struct. Biol. 123, 150–61, 1998.CrossRefGoogle Scholar
  82. 82.
    Chen, J., and Selvin, P. R. Lifetime and color-tailored fluorophores in the micro-to milli-second time regime. J. Am. Chem. Soc. 122, 657–660, 2000.Google Scholar
  83. 83.
    Heyduk, E., and Heyduk, T. Thiol-reactive luminescent Europium chelates: Luminescence probes for resonance energy transfer distance measurements in biomolecules. Anal. Biochem. 248, 216–227, 1997.CrossRefGoogle Scholar
  84. 84.
    Heyduk, E., and Heyduk, T. Architecture of a complex between the sigma 70 subunit of Escherichia coli RNA polymerase and the nontemplate strand oligonucleotide. Luminescence resonance energy transfer study. J. Biol. Chem. 274, 3315–3322, 1999.CrossRefGoogle Scholar
  85. 85.
    Heyduk, E., Heyduk, T., Claus, P., and Wisniewski, J. R. Conformational changes of DNA induced by binding of chironomus high mobility group protein la (cHMGla). J. Biol. Chem. 272, 19763–19770, 1997.CrossRefGoogle Scholar
  86. 86.
    Li, M., and Selvin, P. R. Amine-reactive forms of a luminescent DTPA chelate of terbium and europium: Attachment to DNA and energy transfer measurements. Bioconj. Chem. 8, 127–132, 1997.Google Scholar
  87. 87.
    Selvin, P. R., and Hearst, J. E. Luminescence energy transfer using a terbium chelate: Improvements on fluorescence energy transfer. Proc. Natl. Acad. Sci. USA 91, 10024–10028, 1994.Google Scholar
  88. 88.
    Selvin, P. R., Rana, T. M., and Hearst, J. E. Luminescence resonance energy transfer. J. Am. Chem. Soc. 116, 6029–6030, 1994.CrossRefGoogle Scholar
  89. 89.
    Schobel, U., Egelhaaf, H.-J., Brecht, A., Oelkrug, D., and Gauglitz, G. New donor-acceptor pair for fluorescent immunoassays by energy transfer. Bioconj. Chem. 10, 1107–1114, 1999.Google Scholar
  90. 90.
    Horrocks, W. D., Jr., and Sudnick, D. R. Lanthanide ion probes of structure in biology. Laser-induced luminescence decay constants provide a direct measure of the number of metal-coordinated water molecules. J. Am. Chem. Soc. 101, 334–350, 1979.CrossRefGoogle Scholar
  91. 91.
    Reifenberger, J. G., Snydcr, G. E., and Selvin, P. R. Polarization of luminescent lanthanide chelates. Biophys. J. 82, 430a, 2002.Google Scholar
  92. 92.
    Vereb, G., Jares-Erijman, E., Selvin, P. R., and Jovin, T. M. Time and spectrally resolved imaging microscopy of lanthanide chelates. Biophys. J. 75, 2210–2222, 1998.Google Scholar
  93. 93.
    Xiao, M., and Selvin, P. R. An improved instrument for measuring time-resolved lanthanide emission and resonance energy transfer. Rev. Sci. Inst. 70, 3877–3881, 1999.Google Scholar
  94. 94.
    Callaci, S., Heyduk, E., and Heyduk, T. Core RNA polymerase from E. coli induces a major change in the domain arrangement of the sigma 70 subunit. Mol. Cell. 3, 229–238, 1999.CrossRefGoogle Scholar
  95. 95.
    Helmann, J. D., and deHaseth, P. L. Protein-nucleic acid interactions during open complex formation investigated by systematic alteration of the protein and DNA binding partners. Biochemistry 38, 5959–5967, 1999.CrossRefGoogle Scholar
  96. 96.
    Malhotra, A., Severinova, E., and Darst, S. A. Crystal structure of a sigma 70 subunit fragment from E. coli RNA polymerase. Cell 87, 127–136, 1996.CrossRefGoogle Scholar
  97. 97.
    Gadella, T. W. J., Jovin, T. M., and Clegg, R. M. Fluorescence lifetime imaging microscopy (FLIM)-Spatial resolution of microstructures on the nanosecond time scale. Biophys. Chem. 48, 221–239, 1993.CrossRefGoogle Scholar
  98. 98.
    Lakowicz, J. R. Long lifetime metal-ligand complexes as probes in biophysics and clinical chemistry. Methods Enzymol. 278, 295–321, 1997.Google Scholar
  99. 99.
    Benson, S. C., Mathies, R. A., and Glazer, A. N. Heterodimeric DNA-binding dyes designed for energy transfer: Stability and applications of the DNA complexes. Nucleic Acids Res. 21, 5720–5726, 1993.Google Scholar
  100. 100.
    Glazer, A., and Mathies, R. Energy-transfer fluorescent reagents for DNA analyses. Curr: Opin. Biotechnol. 8, 94–102, 1997.CrossRefGoogle Scholar
  101. 101.
    Ju, J., Ruan, C., Fuller, C. W., Glazer, A. N., and Mathies, R. A. Fluorescence energy transfer dye-labeled primers for DNA sequencing and analysis. Proc. Nat. Acad. Sci. USA 92, 4347–4351, 1995.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Paul R. Selvin
    • 1
  1. 1.Physics Department and Biophysics CenterUniversity of IllinoisUrbana

Personalised recommendations