Advertisement

DNA Arrays for Genetic Analyses and Medical Diagnosis

  • Sabato D’Auria
  • Mosè Rossi
  • Joanna Malicka
  • Zygmunt Gryczynski
  • Ignacy Gryczynski
Chapter
Part of the Topics in Fluorescence Spectroscopy book series (TIFS, volume 7)

Keywords

Oligonucleotide Probe Medical Diagnosis Microarray Image High Density Oligonucleotide Array Gene Expression Monitoring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jang, W., Chen, H.-C., Sicotte, H., and Schuler, G. D. Making effective use of genomic sequence data. Trends Genet 15, 284–286, 1999.CrossRefGoogle Scholar
  2. 2.
    Venter, J. C., et al. The sequence of the human genome. Science 291, 5507, 1304–1351 2001.CrossRefGoogle Scholar
  3. 3.
    Lander, E. S., et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921, 2001.CrossRefGoogle Scholar
  4. 4.
    Richmond, C. S., Glasner, J. D., Mau, R., Jin, H., and Blattner, F. R. Genome-wide expression in Escherichia coli K-12. Nucleic Acids Res. 27, 3821–3835, 1999.CrossRefGoogle Scholar
  5. 5.
    Lashkari, D. A., DeRisi, J. L., McCusker, J. H., Namath, A. F., Gentile, C., Hwang, S. Y., Brown, P. O., and Davis, R. W. Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proc. Natl. Acad. Sci. USA 94, 13057–13062, 1997.Google Scholar
  6. 6.
    Wodicka, L., Dong, H., Mittmann, M., Ho, M-H., and Lockhart, D. J. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nature Biotechnol. 15, 1359–1367, 1997.CrossRefGoogle Scholar
  7. 7.
    Cho, R. J., Campbell, M. J., Winzeler, E. A., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T. G., Gabrielian, A. E., Landsman D., Lockhart, D. J., and Davis, R. W. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell. 2, 65–73, 1998.CrossRefGoogle Scholar
  8. 8.
    Detmer, J., Lagier, R., Flynn, J., Zayati, C., Kolberg, J., Collins, M., Urdea, M., and Sanchez-Pescador, R. Accurate quantification of hepatitis C virus (HCV) RNA from all HCV genotipes by using branched-DNA technology. J. Clin. Microbiol. 34, 901–907, 1996.Google Scholar
  9. 9.
    Horn, T., Chang, C. A., and Urdea, M. S. Chemical synthesis and characterization of branched oligodeoxyribonucleotides (bDNA) for use as signal amplifiers in nucleic acid quantification assays. Nucleic Acids Res. 25, 4842–4849, 1997.Google Scholar
  10. 10.
    Kopp, M. U., Mello, A. J., and Manz, A. Chemical amplification: continuous-flow PCR on a chip. Science 280, 1046–1048, 1998.CrossRefGoogle Scholar
  11. 11.
    Ibrahim, M. S., Lofts, R. S., Jahrling, P. B., Henchal, E. A., Weed, W. V., Northrup, M. A., and Belgrader, P. Real-time microchip PCR for detecting single-base differences in viral and human DNA. Anal. Chem. 70, 2013–2017, 1998.CrossRefGoogle Scholar
  12. 12.
    De Risi, J. L., Lyer, V. R., and Brown, P. O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686, 1997.Google Scholar
  13. 13.
    Saiki, R. K., Walsh, P. S., Levenson, C. H., and Erlich, H. A. Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc. Natl. Acad. Sci. USA 86, 6230–6234, 1989.Google Scholar
  14. 14.
    Holland, P. M., Abramson, R. D., Watson, R., and Gelfand, D. H. Detection of specific polymerase chain reaction product by utilizing the 5′ to 3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl. Acad. Sci. USA 88, 7276–7280, 1991.Google Scholar
  15. 15.
    Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470, 1995.Google Scholar
  16. 16.
    Harrington, C. A., Rosenow, C., and Retief, J. Monitoring gene expression using DNA micro-arrays. Curr. Opin. Microbiol. 3, 285–291, 2000.CrossRefGoogle Scholar
  17. 17.
    Ferea, T. L., Bolstein, D., Brown, P. O., and Rosenzweig, R. E Systematic changes in gene expression patterns following adaptive evolution. Proc. Natl. Acad. Sci. USA 96, 9721–9726, 1999.CrossRefGoogle Scholar
  18. 18.
    Graber, J. H., O’Donnel, M. J., Smith, C. L., and Cantor, C. R. Advances in DNA diagnostics. Curr. Opin. Biotechnol. 9, 14–18, 1998.CrossRefGoogle Scholar
  19. 19.
    Golub, T. R., Slomin, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D., and Lander, E. S. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286, 531–537, 1999.CrossRefGoogle Scholar
  20. 20.
    Lee, P. T., and Lee, K. H. Genomic analysis. Curr. Opin. Biotechnol. 11, 171–175, 2000.Google Scholar
  21. 21.
    Maskos, U., and Southern, E. M., A novel method for the parallel analysis of multiple mutations in multiple samples. Nucleic Acids Res. 21, 2269–2270, 1993.Google Scholar
  22. 22.
    Cavic, B. A., McGovern, M. E., Nisman, R., and Thompson M. High surface density immobilization of oligonucleotide on silicon. Analyst 126, 485–490, 2001.Google Scholar
  23. 23.
    Chrisey, L. A., Lee, G. U., and O’Ferrall, C. E. Covalent attachment of synthetic DNA to self-assembled monolayerfilms. Nucleic Acids Res. 24, 3031–3039, 1996.Google Scholar
  24. 24.
    Beattie, W. G., Meng, L., Turner, S. L., Varma, R. S., Dao, D. D., and Beattie, K. L. Hybridization of DNA targets to glass-tethered oligonucleotide probes. Mol. Biotechnol. 4, 213–225, 1995.Google Scholar
  25. 25.
    Edman, C. F., Raymond, D. E., Wu, D. J., Tu, E., Sosnowski, R. G., Butler, W. F., Nerenberg, M., and Heller, M. J. Electric field directed nucleic acid hybridization on microchips. Nucleic Acids Res. 25, 4907–4914, 1997.CrossRefGoogle Scholar
  26. 26.
    Bidan, G., Billon, M., Galasso, K., Livache, T., Mathis, G., Roget, A., Torres-Rodriguez, L. M., and Vieil, E. Electropolymerization as a versalite route for immobilizing biological species onto surface. Appl. Biochem. Biotechnol. 89, 183–193, 2000.Google Scholar
  27. 27.
    Okamoto, T., Suzuki, T., and Yamamoto, N. Microarray fabrication with covalent attachment of DNA using Bubble Jet technology. Nature Biotechnol. 18, 438–441, 2000.Google Scholar
  28. 28.
    Guschin, D., Yershov, G., Zaslavsky, A., Gemmel, A., Shick, V, Proudnikov, D., Arenkov, P., and Mirzabekov, A. Manual manufacturing of oligonucleotide, DNA, and protein microchips. Anal. Biochem. 250, 203–211, 1997.CrossRefGoogle Scholar
  29. 29.
    Gentalen, E., and Chee, M. A novel method for determining linkage between DNA sequences: Hybridization to paired probearrays. Nucleic Acids Res. 27, 1485–1491, 1999.CrossRefGoogle Scholar
  30. 30.
    Lipshutz, R. J., Fodor, S. P. A., Gingeras, T. R., and Lockhart, D. J. High density synthetic oligonucleotides arrays. Nature Genet. Suppl. 21, 20–24, 1999.CrossRefGoogle Scholar
  31. 31.
    Hedge, P., Qi, R., Abernathy, K., Gay, C., Dharap, S., Gaspard, R., Hughes, J. E., Snesrud, E., Lee, N., and Quackenbush, J. A concise guide to cDNA microarray analysis. BioTechniques 29, 548–562, 2000.Google Scholar
  32. 32.
    Henegariu, O., Bray-Ward, P., and Ward, D. C. Custom fluorescent-nucleotide synthesis as an alternative method for nucleic acid labeling. Nature Biotechnol. 18, 345–348, 2000.CrossRefGoogle Scholar
  33. 33.
    Sastry, S. A fluorescence-based assay for transcription using a novel fluorescent GTP analogue. Biophys. Chem. 91, 191–208, 2001.CrossRefGoogle Scholar
  34. 34.
    Lay, M. J., and Wittwer, C. T. Real-time fluorescence genotyping of factor V Leiden during rapid-cycle PCR. Clin. Chem. 43, 2262–2267, 1997.Google Scholar
  35. 35.
    Wittwer, C. T., Herrmann, M. G., Moss, A. A, and Rasmussen, R. P. Continuous fluorescence monitoring of rapid cycle DNA amplification. BioTechniques 22, 130–138, 1997.Google Scholar
  36. 36.
    Tyagi, S., Bratu, D. P., and Kramer, F. R. Multicolor molecular beacons discrimination. Nature Biotechnol. 16, 49–53, 1998.CrossRefGoogle Scholar
  37. 37.
    Haugland, R. P. Handbook of Fluorescent Probes and Research Chemicals, 6th ed. Eugene, OR: Molecular Probes, 1996.Google Scholar
  38. 38.
    Drobyshev, A. L., Zasedatelev, A. S., Yershov, G. M., and Mirzabekov, A. D. Massive parallel analysis of DNA-Hoechst 33258 binding specificity with a generic oligodeoxyribonucleotide microchip. Nucleic Acids Res. 27, 4100–4105. 1999.CrossRefGoogle Scholar
  39. 39.
    Timtcheva, I., Maximova, V., Deligeorgiev, T., Gadjev, N., Drexhage, K. H., and Petkova, I. Homodimeric monomethine cyanine dyes as fluorescent probes of biopolymers. J. Photochem. Photobiol. B: Biol. 58, 130–135, 2000.Google Scholar
  40. 40.
    Dugan, D. J., Bittner, M., Chen, Y., Meltzer, P., and Trent, J. M. Expression profiling using cDNA microarray. Nature Genet. 21, 10–14, 1999.Google Scholar
  41. 41.
    Khan, J., Saal, L. H., Bittner, M. L., Chen, Y., Trent, J. M., and Meltzer, P. S. Expression profiling in cancer using cDNA microarray. Electrophoresis 20, 223–229, 1999.CrossRefGoogle Scholar
  42. 42.
    Yurov, Y. B., Soloviev, I. V., Vorsanova, S. G., Marcais, B., Roizes, G., and Lewis, R. High resolution multicolor fluorescence in situ hybridization using cyanine and fluorescein dyes: Rapid chromosome identification by directly fluorescently labeled alphoid DNA probes. Hum. Genet. 97, 390–398, 1996.Google Scholar
  43. 43.
    Kotova, E. Y., Kreindlin, E. Y., Barsky, V. E., and Mirzabekov A. D. Optical properties of fluorochromes promising for use in biological microchips. Mol Biol. 34, 266–271, 2000.Google Scholar
  44. 44.
    Wessendorf, M. W., and Brelje, T. C. Which fluorophore is brightest? A comparison of the staining obtained using fluorescein, tetramethylrhodamine, lissamine rhodamine, Texas red, and cyanine 3.18. Histochemistry 98, 81–85, 1992.CrossRefGoogle Scholar
  45. 45.
    Hacia, J. G., Edgemon, K., Sun, B., Stern, D., Fodor, S. P. A., and Collins, F. S. Two color hybridization analysis using high density oligonucleotide arrays and energy transfer dyes. Nucleic Acids Res. 26, 3865–3866, 1998.Google Scholar
  46. 46.
    Brelje, T. C., Wessendorf, M. W., and Sorenson, R. L. Multicolorlaser scanning confocal immunofluorescence microscopy: practical application and limitations. Methods Cell Biol. 38, 97–181, 1993.Google Scholar
  47. 47.
    Bachteler, G., Drexhage, K. H., Arden-Jacob, A. J., Han, K. T., Kollner, M., Muller, R., Sauer, M., Seeger, S., and Wolfrum, J. Sensitive fluorescence detection in capillary gel electrophoresis using laserdiodes and multiplex dyes. J. Luminesc. 62, 101–108, 1994.CrossRefGoogle Scholar
  48. 48.
    Lassiter, S. J., Stryjewski, W., Legendre, B. L., Erdmann, R., Wahl, M., Wurm, J., Peterson, R., Middendorf, L., and Soper, S. A. Time-resolved fluorescence imaging of slab gels for lifetime base-calling in DNA sequencing applications. Anal. Chem. 72, 5373–5382, 2000.CrossRefGoogle Scholar
  49. 49.
    Waddell, E., Wang, Y., Stryjewski, W., McWhorter, S., Henry, A. C., Evans, D., McCarley, R., and Soper, S. A. High-resolution near-infrared imaging of DNA microarrays with time-resolved acquisition of fluorescence lifetimes. Anal. Chem. 72, 5907–5917, 2000.CrossRefGoogle Scholar
  50. 50.
    Cheung, V. G., Morley, M., Aguilar, F., Massimi, A., Kucherlapati, R., and Childs, G. Making and reading microarrays. Nature Genet. 21, 15–19, 1999.CrossRefGoogle Scholar
  51. 51.
    Eggers, M., Hogan, M., Reich, R. K., Lamture, J., Ehrlich, D., Hollins, M., Kosicki, B., Powdrill, T., Beattie, K., Smith, S., Varma, R., Gangadharan, R., Mallik, A., Burke, B., and Wallace, D. A microchip for quantitative detection of molecules utilizing luminescent and radioisotope reporter groups. BioTechniques 17, 516–524, 1994.Google Scholar
  52. 52.
    Chechetkin, V. R., Turygin, A. Y., Proudnikov, D. Y., Prokopenko, D. V., Kirillov, E. V., and Mirzabekov, A. D. Sequencing by hybridization with the generic 6-mer oligonucleotide microarray: an advanced scheme for data processing. J. Biomol.Struct. Dyn. 18, 83–101, 2000.Google Scholar
  53. 53.
    Brignac, S. J., Jr, Gangadharan, R., McMahon, M., Denman, J., Gonzales, R., Mendoza, L. G., and Eggers, M. A proximal CCD imaging system for high-through put detection of microarray-based assays. IEEEEng. Med. Biol. Mag. 18, 120–122, 1999.Google Scholar
  54. 54.
    Graves, D. J. Powerful tools for genetic analysis come of age. TIBOTECH 17, 127–134, 1999.Google Scholar
  55. 55.
    Drmanac, S., Kita, D., Labat, I., Mauser, B., Schmidt, C., Burczak, J. D., and Drmanac, R. Accurate sequencing by hybridization for DNA diagnostics and individual genomics. Nature Biotechnol. 16, 54–58, 1998.CrossRefGoogle Scholar
  56. 56.
    Schafer, A. J., and Hawkins, J. R. DNA variation and the future of human genetics. Nature Biotechnol. 16, 33–39, 1999.Google Scholar
  57. 57.
    Marshall, A. Getting the right drug into the right patient. Nature Biotechnol. 15, 1249–1252, 1997.Google Scholar
  58. 58.
    Brown, P. O., and Hartwell, L. Genomics and human disease-variations onvariation. Nature Genet. 18, 91–93, 1998.CrossRefGoogle Scholar
  59. 59.
    DeRisi, J., Penland, L., Brown, P. O., Bittner, M. L., Meltzer, P. S., Ray, M., Chen, Y., Su, Y. A., and Trent, J. M. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nature Genet. 14, 457–460, 1996.Google Scholar
  60. 60.
    Hacia, J. G., Brody, L. C., Chee, M. S., Fodor, S. P., and Collins, F. S. Detection of heterozygous mutations in BRCA1 using high density oligonucleotide arrays and two-colour fluorescence analysis. Nature Genet. 14, 441–447, 1996.CrossRefGoogle Scholar
  61. 61.
    Zhang, L., Zhou, W., Velculescu, V. E., Kern, S. E., Hruban, R. H., Hamilton, S. R., Vogelstein, B., and Kinzler, K. W., Gene expression profiles in normal and cancer cells. Science 276, 1268–1272, 1997.Google Scholar
  62. 62.
    Wooster, R. Cancer classification with DNA microarrays: Islessmore? TIG 16, 327–329, 2000.Google Scholar
  63. 63.
    Alizadeh, A. A., et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511, 2000.Google Scholar
  64. 64.
    Ross, D. T., Scherf, U., Eisen, M. B., Perou, C. M., Rees, C., Spellman, P., Iyer, V., Jeffrey, S. S., Van de Rijn, M., Waltham, M., Pergamenschikov, A., Lee, J. C., Lashkari, D., Shalon, D., Myers, T. G., Weinstein, J. N., Botstein, D., and Brown, P. O. Systematic variation in gene expression patterns in human cancer cell lines. Nature Genet. 24, 227–235, 2000.Google Scholar
  65. 65.
    Elek, J., Park, K. H., and Narayanan, R. Microarray-based expression in prostate tumors. In Vivo 14, 173–182, 2000.Google Scholar
  66. 66.
    Sgroi, D. N., Teng, S., Robinson, G., LeVangie, R., Hudson, J. R., Jr., and Elkahloun, A. G. In vivo gene expression profile analysis of human breast cancer progression. Cancer Res. 59, 5656–5661, 1999.Google Scholar
  67. 67.
    Nadler, S. T., and Attie, A. D. Please pass the chips: Genomic insights into obesity and diabetes. J. Nutr. 8, 2078–2081, 2001.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Sabato D’Auria
    • 1
  • Mosè Rossi
    • 2
  • Joanna Malicka
    • 1
  • Zygmunt Gryczynski
    • 1
  • Ignacy Gryczynski
    • 1
  1. 1.Center for Fluorescence SpectroscopyUniversity of Maryland at BaltimoreBaltimore
  2. 2.Institute of Protein Biochemistry and EnzymologyNational Research CouncilNaplesItaly

Personalised recommendations