Chemistry of Locked Nucleic Acids (LNA)

Design, Synthesis and Bio-Physical Properties
  • Jesper Wengel
  • Michael Petersen
  • Miriam Frieden
  • Troels Koch
Part of the Medical Intelligence Unit book series (MIUN)


Preparation of LNA nucleosides requires a number of synthetic steps but very efficient procedures have been developed, as have protocols for synthesis of LNA oligonucleotides on automated DNA synthesizers. In all cases, LNA oligonucloetides have exhibited good aqueous solubility as would be expected from their close structural resemblance to the natural nucleic acids.

The universality of LNA mediated high-affinity and specific hybridization has been demonstrated extensively with a large number of duplex forming LNA-oligonucloetides. Most importantly, most of the members of the LNA molecular family have been shown to exert their substantial affinity increase in combination with standard DNA, RNA and contemporary analogues whether inserted as single nucleosides in an oligonucleotide or as blocks of contiguous nucleotides. The works on TFO’s is expanding the usefulness of LNA to double strand recognition and it has been demonstrated that LNA it is a promising structure for further base modifications in the pursuit of global sequence specific recognition of DNA.


Peptide Nucleic Acid Locked Nucleic Acid Sugar Pucker Triplex Formation Sugar Conformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    De Mesmaeker A, Häner R, Moser HE. Acc Chem Res 1995; 28:366–374.CrossRefGoogle Scholar
  2. 2.
    Beaucage SL, Iver RP. Tetrahedron 1993; 49:6123–6194.CrossRefGoogle Scholar
  3. 3.
    Herdewijn P. Liebigs Ann 1996; 1337–1348.Google Scholar
  4. 4.
    Freier SM, Altmann K-H. Nucleic Acid Research 1997; 25:4429–4443.CrossRefGoogle Scholar
  5. 5.
    Ullmann E. Opin Drug Discovery Dev 2000; 3:203–213.Google Scholar
  6. 6.
    Meldgaard M, Wengel J. Bicyclic nucleosides and conformational restriction of oligonucleotides. J Chem Soc Perkin Trans 1 2000; 1:3539–3554.CrossRefGoogle Scholar
  7. 7.
    Wengel J. Synthesis of 3′-C-and 4′-C-branched oligodeoxynucleotides and the development of locked nucleic acid (LNA). Acc Chem Res 1999; 32:301–310.CrossRefGoogle Scholar
  8. 8.
    Koshkin A, Singh SK, Nielsen P et al. LNA (Locked Nucleic Acids): Synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron 1998; 54:3607–3630.CrossRefGoogle Scholar
  9. 9.
    Singh SK, Nielsen P, Koshkin A et al. LNA (locked nucleic acids): Synthesis and high-affinity nucleic acid recognition. Chem Commun 1998; 455–456.Google Scholar
  10. 10.
    Obika S, Hari Y, Sugimoto T et al. Triplex-forming enhancement with high sequence selectivity by single 2′-0,4′-C-methylene bridged nucleic acid 2′,4′-BNA) modification. Tetrahedron lett 2000; 41:8923–8927.CrossRefGoogle Scholar
  11. 11.
    Koshkin AA, Fensholdt J, Pfundheller HM et al. A simplified and efficient route to 2′-O, 4′-C-methylene-linked bicyclic ribonucleosides (locked nucleic acid). J Org Chem 2001; 466(25):8504–8512.CrossRefGoogle Scholar
  12. 12.
    Koshkin A, Rajwanshi VK, Wengel J. Novel convenient syntheses of LNA [2.2.1] bicyclo nucleo-sides. Tetrahedron Lett 1998; 39:4381–4384.CrossRefGoogle Scholar
  13. 13.
    Obika S, Nanbu D, Hari Y et al. Synthesis of 2′-0,4′-C-Methyleneuridine and-cytidine. Novel bicyclic nucleosides having a fixed C3-endo sugar puckering. Tetrahedron Lett 1997; 38 (Number 50):8735–8738.CrossRefGoogle Scholar
  14. 14.
    Brown T, Brown DJS. Modern machine-aided methods of oligodeoxyribonucleotide synthesis. In: Eckstein F, ed. Oligonucleotides and Analogues A Practical Approach. Oxford: IRL Press, 1991:13–14.Google Scholar
  15. 15.
    Koshkin A, Nielsen P, Meldgaard M et al. LNA (Locked Nucleic Acid): An RNA Mimic Forming Exceedingly Stable LNA: LNA Duplexes. J Am Chem Soc 1998; 120 (Number 50):13252–13253.CrossRefGoogle Scholar
  16. 16.
    Obika S, Nanbu D, Hari Y et al. Stability and structural features of the deplexes containing nucleoside analogues with a fixed N-type conformation, 2′-0,4′-C-methyleneribonucleosides. Elsevier Science Ltd 1998; 39:5401–5404.Google Scholar
  17. 17.
    Pon RT, Yu S. Rapid automated derivatizatiob of solid-phase supports for oligonucleotide synthesis using uronium and phosphonium coupling reagents. Tetrahedron Lett 1997; 38:3331–3334.CrossRefGoogle Scholar
  18. 18.
    Babu BR, Wengel J. Universal hybridization using LNA (locked nucleic acid) containing a novel pyrene LNA nucleotide monomer. Chem Commun 2001; (2001-First published as an Advance Article on the web October 2001):2114–2115.Google Scholar
  19. 19.
    Håkansson AE, Wengel J. The adenine derivative of alpha-L-LNA (alpha-L-ribo configured locked nucleic acid): Synthesis and high-affinity hybridization towards DNA, RNA, LNA and alpha-L-LNA complementary sequences. Bioorg Med Chem Lett 2001; 11(7):935–938.PubMedCrossRefGoogle Scholar
  20. 20.
    Kumar R, Singh SK, Koshkin AA et al. The first analogues of LNA (locked nucleic acids): Phosphorothioate-LNA and 2′-thio-LNA. Bioorg Med Chem Lett 1998; 8(16):2219–2222.PubMedCrossRefGoogle Scholar
  21. 21.
    Obika S, Hari Y, Morio JAK et al. Synthesis of conformationally locked C-nucleosides having a 2,5-dioxabicyclo (2.2.1) heptane ring system. Tetrahedron Lett 2000; 215–219.Google Scholar
  22. 22.
    Rajwanshi VK, Håkansson AE, Dahl BM et al. LNA stereoisomers: Xylo-LNA (beta-D-xylo con-figures locked nucleic acid) and alfa-L-LNA (alfa-L-ribo configures locked nucleic acid). Chem Commun 1999; 1395–1396.Google Scholar
  23. 23.
    Rajwanshi VK, Håkansson AE, Kumar R et al. High-affinity nucleic acid recognition using “LNA” (locked nucleic acid, beta-D-ribo configures LNA), “xylo-LNA” (beta-D-xylo confirgures LNA) or “alfa-L-LNA” (alfa-L-ribo configured LNA). Chem Commun 1999; 2073–2074.Google Scholar
  24. 24.
    Singh SK, Kumar R, Wengel J. Synthesis of 2′-Amino-LNA: A Novel conformationally restricted high-affinity oligonucleotide analogue with a handle. The Journal of Organic Chemistry 1998; 63 (Number 26):10035–10039.CrossRefGoogle Scholar
  25. 25.
    Singh SK, Wengel J. Universality of LNA-mediated high-affinity nucleic acid recognition. Chem Commun 1998; 1247–1248.Google Scholar
  26. 26.
    Wengel J, Petersen M, Nielsen KE et al. LNA (locked nucleic acid) and the diastereoisomeric alpha-L-LNA: Conformational tuning and high-affinity recognition of DNA/RNA targets. Nucleosides Nucleotides Nucleic Acids 2001; 20(4–7):389–396.PubMedCrossRefGoogle Scholar
  27. 27.
    Braasch DA, Corey R. Locked nucleic acid (LNA): Fine-tuining the recognition of DNA and RNA. Chem Biol 2001; 8:1–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Rajwanshi VK, Håkansson AE, Pitsch S et al. The eight stereoisomers of LNA (Locked Nucleic Acid): A remarkable family of strong RNA binding molecules. Angew Chem Int Ed 2000; 39:1656–1659.CrossRefGoogle Scholar
  29. 29.
    Sorensen AM, Kvaerno L, Bryld T et al. alpha-L-ribo-configured locked nucleic acid (alpha-L-LNA): synthesis and properties. J Am Chem Soc 2002; 124(10):2164–76.PubMedCrossRefGoogle Scholar
  30. 30.
    Nielsen P, Dalskov JK. Alpha-LNA, locked nucleic acid with alpha-d-configuration. Chem Commun 2000; 1179–1180.Google Scholar
  31. 31.
    Nielsen P, Christensen NK, Dalskov JK. Alpha-LNA (locked nucleic acid with alpha-D-configuration): synthesis and selective parallel recognition of RNA. Chemistry 2002; 8(3):712–22.PubMedCrossRefGoogle Scholar
  32. 32.
    Wang G, Girardet J-L, Gunic E. Conformationally locked nucleosides. Synthesis and stereochemical assignments of 2′-C,4′-C-bridged bicyclonucleosides1,2. Tetrahedron 1999; 55:7707–7724.CrossRefGoogle Scholar
  33. 33.
    Wang G, Gunic E, Girardet J-L et al. Conformationally locked nucleosides. Synthesis and hybridization properties of oligodeoxynucleotides containing 2′,4′-C-bridged 2′-deoxynucleosidesl. Bioorg Med Chem Lett 1999; 9:1147–1150.PubMedCrossRefGoogle Scholar
  34. 34.
    Morita K, Hasegawa C, Kaneko M et al. Bioorg Med Chem Lett 2002; 12:73–76.PubMedCrossRefGoogle Scholar
  35. 35.
    Christensen U, Jacobsen N, Rajwanshi VK et al. Stopped-flow kinetics of locked nucleic acid (LNA)-oligonucleotide duplex formation: Studies of LNA-DNA and DNA-DNA interactions. Biochem J 2001; 354 (Pt 3):481–484.PubMedCrossRefGoogle Scholar
  36. 36.
    Brameld KA, Goddard WA. J Am Chem Soc 1999; 121:985–993.CrossRefGoogle Scholar
  37. 37.
    Cheatham TE, Kollman PA. J Am Chem Soc 1997; 119:4805–4825.CrossRefGoogle Scholar
  38. 38.
    González C, Stec W, Raynolds MA et al. Structure and dynamics of a DNA.RNA hybrid duplex with a chiral phosphorothioate moiety: NMR and molecular dynamics with conventional and time-averaged restraints. Biochemistry 1995; 34(15):4969–82.PubMedCrossRefGoogle Scholar
  39. 39.
    Bondensgaard K, Petersen M, Singh SK et al. Structural studies of LNA:RNA duplexes by NMR: Conformations and implications for RNase H activity. Chem Eur J 2000; 6(15):2687–2695.CrossRefGoogle Scholar
  40. 40.
    Petersen M, Håkansson AE, Wengel J et al. alpha-L-LNA (alpha-I-ribo configured locked nucleic acid) recognition of RNA. A study by NMR spectroscopy and molecular dynamics simulations. J Am Chem Soc 2001; 123(30):7431–7432.PubMedCrossRefGoogle Scholar
  41. 41.
    Wahlestedt C, Salmi P, Good L et al. Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proc Natl Acad Sci USA 2000; 97(10):5633–5638.PubMedCrossRefGoogle Scholar
  42. 42.
    Petersen M, Bondensgaard K, Wengel J et al. Locked nucleic acid (LNA) recognition of RNA: NMR solution structures of LNA:RNA hybrids. J Am Chem Soc 2002; 124(21):5974–82.PubMedCrossRefGoogle Scholar
  43. 42a.
    Nielsen KE, Rasmussen J, Kumar R et al. NMR studies of fully modified locked nucleic acid (LNA) hybrids: solution structure of an LNA:RNA hybrid and characterization of an LNA:DNA hybrid. Bioconjug Chem 2004; 15(3):449–57.PubMedCrossRefGoogle Scholar
  44. 43.
    Jensen GA, Singh SK, Kumar R et al. A comparison of the solution structures of an LNA:DNA duplex and the unmodified DNA:DNA duplex. J Chem Soc Perkin Trans 2001; 2:1224–1232.Google Scholar
  45. 43a.
    Nielsen JT, Stein PC, Petersen M. NMR structure of an alpha-L-LNA:RNA hybrid: structural implications for RNase H recognition. Nucleic Acids Res 2003; 31(20):5858–67.PubMedCrossRefGoogle Scholar
  46. 44.
    Nielsen CB, Singh SK, Wengel J et al. The solution structure of a locked nucleic acid (LNA) hybridized to DNA. J Biomol Struct Dyn 1999; 17(2):175–191.PubMedGoogle Scholar
  47. 44a.
    Nielsen KE, Petersen M, Håkansson AE et al. Chem Eur J 2002; 8:3001.CrossRefGoogle Scholar
  48. 45.
    Nielsen KE, Singh SK, Wengel J et al. Solution structure of an LNA hybridized to DNA: NMR study of the d(CT(L)GCT(L)T(L)CT(L)GC):d(GCAGAAGCAG) duplex containing four locked nucleotides. Bioconjug Chem 2000; 11(2):228–238.PubMedCrossRefGoogle Scholar
  49. 46.
    Petersen M, Nielsen CB, Nielsen KE et al. The conformations of locked nucleic acids (LNA). J Mol Recognit 2000; 13(1):44–53.PubMedCrossRefGoogle Scholar
  50. 47.
    Egli M, Minasov G, Teplova M et al. X-ray crystal structure of a locked nucleic acid (LNA) duplex composed of a palindromic 10-mer DNA strand containing one LNA thymine monomer. Chem Commun 2001; 651–652.Google Scholar
  51. 48.
    Sarafianos SG, Das K, Tantillo C et al. Crystal structure of HIV-1 reverse transcriptase in complex with a polypurine tract RNA:DNA. EMBO J 2001; 20(6):1449–61.PubMedCrossRefGoogle Scholar
  52. 49.
    Trapane TL, Paul OP Ts’O. Triplex formation at single-stranded nucleic acid target sites of unrestricted sequences by two added strands of oligonucleotides: A proposed model. J Am Chem Soc 1994; 116:10437–10449.CrossRefGoogle Scholar
  53. 50.
    Von Nguyen T, Thuong CH. Sequenzspezifische erkennung und modifikation von doppelhelix-DNA durch oligonucleotide. Angw Chem Int Ed Engl 1993; 32:666–690.CrossRefGoogle Scholar
  54. 51.
    Wang S, Kool ET. Recognition of single-stranded nucleic acid by triplex formation: The binding of pyrimidine-Rich sequences. J Am Chem Soc 1994; 116:8857–8858.CrossRefGoogle Scholar
  55. 52.
    Satoshi O, Takeshi I. 3′-Amino-2′,4′-BNA: Novel bridged nucleic acids having an N3′-P5′phosphoramidate linkage. Chem Commun 2001; 1992–1993.Google Scholar
  56. 53.
    Lee JS, Woodsworth ML, Latimer LJ et al. Nucleic Acid Research 1984; 12:6603.CrossRefGoogle Scholar
  57. 54.
    Satoshi O, Takeshi U, Tomomi S et al. 2′-O,4′-C-Methylene bridged nucleic Acid (2′,4′-BNA): Synthesis and Triplex-Forming Properties. Bioorganic & Medicinal Chemistry 2001; 9:1001–1011.CrossRefGoogle Scholar
  58. 55.
    Obika S, Hari Y, Sekiguchi M et al. A 2′,4′-Bridged nucleic acid containing 2-Pyridone as a nucleobase: Efficient recognition of a C-G interruption by triplex formation with a pyrimidine motif. Angew Chem Int 2001; 40:2079–2081.CrossRefGoogle Scholar
  59. 56.
    Satoshi O, Yoshiyuki H, Hiroyasu I et al. 2′,4′-BNA bearing unnatural nucleobases: Towards the expansion of the target sequence double-starnded DNA in triplex formation. Nucleic Acid Re-search 2001; (Suppl 1):171–172.Google Scholar
  60. 57.
    Satoshi O, Yoshiyuki H, Satoshi O et al. A 2′,4′-Bridged nucleic acid containing 2-pyridone as a nucleobase: Efficient recognition of a C-G interruption by triplex formation with a pyrimidine motif. Angw Chem Int Ed Engl 2001; 40:2079–2081.CrossRefGoogle Scholar

Copyright information

© and Kluwer Academic / Plenum Publishers 2006

Authors and Affiliations

  • Jesper Wengel
    • 1
  • Michael Petersen
    • 1
  • Miriam Frieden
    • 2
  • Troels Koch
    • 2
  1. 1.Nucleic Acid Center Department of ChemistryUniversity of Southern DenmarkOdenseDenmark
  2. 2.Santaris Pharma A/SHørsholmDenmark

Personalised recommendations