Recent Applications of RNA Interference (RNAi) in Mammalian Systems

  • Lisa Scherer
  • John J. Rossi
Part of the Medical Intelligence Unit book series (MIUN)


Human Immunodeficiency Virus Acute Myeloid Leukemia Human Immunodeficiency Virus Infection Peptide Nucleic Acid Human Immunodeficiency Virus Replication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McManus MT, Sharp PA. Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 2002; 3(10):737–47.PubMedCrossRefGoogle Scholar
  2. 2.
    Tuschl T. Expanding small RNA interference. Nat Biotechnol 2002; 20(5):446–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Paul CP, Good PD, Winer I et al. Effective expression of small interfering RNA in human cells. Nat Biotechnol 2002; 20(5):505–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Lee NS, Dohjima T, Bauer G et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 2002; 20(5):500–5.PubMedGoogle Scholar
  5. 5.
    Paul CP, Good PD, Li SX et al. Localized expression of small RNA inhibitors in human cells. Mol Ther 2003; 7(2):237–47.PubMedCrossRefGoogle Scholar
  6. 6.
    Wilson JA, Jayasena S, Khvorova A et al. RNA interference blocks gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells. PNAS 2003; 252758799.Google Scholar
  7. 7.
    Barton GM, Medzhitov R. Retroviral delivery of small interfering RNA into primary cells. Proc Natl Acad Sci USA 2002; 99(23):14943–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Abbas-Terki T, BlancoBose W, Deglon N et al. Lentiviral-mediated RNA interference. Hum Gene Ther 2002; 13(18):2197–201.PubMedCrossRefGoogle Scholar
  9. 9.
    Rubinson DA, Dillon CP, Kwiatkowski AV et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 2003; 33(3):401–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Qin X-F, An DS, Chen ISY et al. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. PNAS 2003; 100(1):183–188.PubMedCrossRefGoogle Scholar
  11. 11.
    Tiscornia G, Singer O, Ikawa M et al. A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc Natl Acad Sci USA 2003; 100(4):1844–1848.PubMedCrossRefGoogle Scholar
  12. 12.
    Holen T, Amarzguioui M, Wiiger MT et al. Positional effects of short interfering RNAs targeting the human coagulation trigger tissue factor. Nucleic Acids Res 2002; 30(8):1757–66.PubMedCrossRefGoogle Scholar
  13. 13.
    Yang D, Buchholz F, Huang Z et al. Short RNA duplexes produced by hydrolysis with Escherichia coli RNase III mediate effective RNA interference in mammalian cells. Proc Natl Acad Sci USA 2002; 99(15):9942–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Kawasaki H, Suyama E, Iyo M et al. siRNAs generated by recombinant human Dicer induce specific and significant but target site-independent gene silencing in human cells. Nucleic Acids Res 2003; 31(3):981–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Yu JY, DeRuiter SL, Turner DL. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci USA 2002; 99(9):6047–52.PubMedCrossRefGoogle Scholar
  16. 16.
    Elbashir SM, Harborth J, Lendeckel W et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411(6836):494–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Chiu YL, Rana TM. RNAi in human cells: Basic structural and functional features of small interfering RNA. Mol Cell 2002; 10(3):549–61.PubMedCrossRefGoogle Scholar
  18. 18.
    Scherr M, Rossi JJ. Rapid determination and quantitation of the accessibility to native RNAs by antisense oligodeoxynucleotides in murine cell extracts. Nucleic Acids Res 1998; 26(22):5079–85.PubMedCrossRefGoogle Scholar
  19. 19.
    Scherr M, Reed M, Huang CF et al. Oligonucleotide scanning of native mRNAs in extracts predicts intracellular ribozyme efficiency: Ribozyme-mediated reduction of the murine DNA methyltransferase. Mol Ther 2000; 2(1):26–38.PubMedCrossRefGoogle Scholar
  20. 20.
    Scherr M, LeBon J, Castanotto D et al. Detection of antisense and ribozyme accessible sites on native mRNAs: Application to NCOA3 mRNA. Mol Ther 2001; 4(5):454–60.PubMedCrossRefGoogle Scholar
  21. 21.
    Castanotto D, Li H, Rossi JJ. Functional siRNA expression from transfected PCR products. RNA 2002; 8(11):1454–60.PubMedCrossRefGoogle Scholar
  22. 22.
    Myers JW, Jones JT, Meyer T et al. Recombinant Dicer efficiently converts large dsRNAs into siRNAs suitable for gene silencing. Nat Biotechnol 2003.Google Scholar
  23. 23.
    Heidenreich O, Krauter J, Riehle H et al. AML1/MTG8 oncogene suppression by small interfering RNAs supports myeloid differentiation of t(8;21)-positive Leukemic Cells. Blood 2002.Google Scholar
  24. 24.
    Zhang H, Kolb FA, Brondani V et al. Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. Embo J 2002; 21(21):5875–85.PubMedCrossRefGoogle Scholar
  25. 25.
    Provost P, Dishart D, Doucet J et al. Ribonuclease activity and RNA binding of recombinant human Dicer. Embo J 2002; 21(21):5864–74.PubMedCrossRefGoogle Scholar
  26. 26.
    Hooberman AL, Carrino JJ, Leibowitz D et al. Unexpected heterogeneity of BCR-ABL fusion mRNA detected by polymerase chain reaction in Philadelphia chromosome-positive acute lymphoblastic leukemia. Proc Natl Acad Sci USA 1989; 86(11):4259–63.PubMedCrossRefGoogle Scholar
  27. 27.
    Rubin CM, Carrino JJ, Dickler MN et al. Heterogeneity of genomic fusion of BCR and ABL in Philadelphia chromosome-positive acute lymphoblastic leukemia. Proc Natl Acad Sci USA 1988; 85(8):2795–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Chan LC, Karhi KK, Rayter SI et al. A novel abl protein expressed in Philadelphia chromosome positive acute lymphoblastic leukaemia. Nature 1987; 325(6105):635–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Wilda M, Fuchs U, Wossmann W et al. Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi). Oncogene 2002; 21(37):5716–24.PubMedCrossRefGoogle Scholar
  30. 30.
    Scherr M, Battmer K, Winkler T et al. Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood 2003; 101(4):1566–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Jakubowiak A, Pouponnot C, Berguido F et al. Inhibition of the transforming growth factor beta 1 signaling pathway by the AML1/ETO leukemia-associated fusion protein. J Biol Chem 2000; 275(51):40282–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Pabst T, Mueller BU, Harakawa N et al. AML1-ETO downregulates the granulocytic differentiation factor C/EBPalpha in t(8;21) myeloid leukemia. Nat Med 2001; 7(4):444–51.PubMedCrossRefGoogle Scholar
  33. 32a.
    Dohjima J, Lee NS, Li H et al. Small interfering RNAs expressed from a Pol III promoter suppress the EWS/Fli-1 transcript in an Ewing sarcoma cell line. Mol Ther 2003; 7(6):811–6.PubMedCrossRefGoogle Scholar
  34. 33.
    Jacque JM, Triques K, Stevenson M. Modulation of HIV-1 replication by RNA interference. Nature 2002; 418(6896):435–8.PubMedCrossRefGoogle Scholar
  35. 34.
    Coburn GA, Cullen BR. Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. J Virol 2002; 76(18):9225–31.PubMedCrossRefGoogle Scholar
  36. 35.
    Surabhi RM, Gaynor RB. RNA interference directed against viral and cellular targets inhibits human immunodeficiency virus type 1 replication. J Virol 2002; 76(24):12963–73.PubMedCrossRefGoogle Scholar
  37. 36.
    Park WS, Miyano-Kurosaki N, Hayafune M et al. Prevention of HIV-1 infection in human peripheral blood mononuclear cells by specific RNA interference. Nucleic Acids Res 2002; 30(22):4830–5.PubMedCrossRefGoogle Scholar
  38. 37.
    Novina CD, Murray MF, Dykxhoorn DM et al. siRNA-directed inhibition of HIV-1 infection. Nat Med 2002; 8(7):681–6.PubMedGoogle Scholar
  39. 38.
    Martinez MA, Clotet B, Este JA. RNA interference of HIV replication. Trends Immunol 2002; 23(12):559–61.PubMedCrossRefGoogle Scholar
  40. 39.
    Kitabwalla M, Ruprecht RM. RNA interference—a new weapon against HIV and beyond. N Engl J Med 2002; 347(17):1364–7.PubMedCrossRefGoogle Scholar
  41. 40.
    Martinez MA, Gutierrez A, Armand-Ugon M et al. Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication. Aids 2002; 16(18):2385–90.PubMedCrossRefGoogle Scholar
  42. 41.
    Blight KJ, Kolykhalov AA, Rice CM. Efficient initiation of HCV RNA replication in cell culture. Science 2000; 290(5498):1972–4.PubMedCrossRefGoogle Scholar
  43. 42.
    Lohmann V, Korner F, Koch J et al. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 1999; 285(5424):110–3.PubMedCrossRefGoogle Scholar
  44. 43.
    Ikeda M, Yi M, Li K et al. Selectable subgenomic and genome-length dicistronic RNAs derived from an infectious molecular clone of the HCV-N strain of hepatitis C virus replicate efficiently in cultured Huh7 cells. J Virol 2002; 76(6):2997–3006.PubMedCrossRefGoogle Scholar
  45. 44.
    Krieger N, Lohmann V, Bartenschlager R. Enhancement of hepatitis C virus RNA replication by cell cultureadaptive mutations. J Virol 2001; 75(10):4614–24.PubMedCrossRefGoogle Scholar
  46. 45.
    Pietschmann T, Lohmann V, Rutter G et al. Characterization of cell lines carrying self-replicating hepatitis C virus RNAs. J Virol 2001; 75(3):1252–64.PubMedCrossRefGoogle Scholar
  47. 46.
    Kishine H, Sugiyama K, Hijikata M et al. Subgenomic replicon derived from a cell line infected with the hepatitis C virus. Biochem Biophys Res Commun 2002; 293(3):993–9.PubMedCrossRefGoogle Scholar
  48. 47.
    Randall G, Grakoui A, Rice CM. Clearance of replicating hepatitis C virus replicon RNAs in cell culture by small interfering RNAs. Proc Natl Acad Sci USA 2003; 100(1):235–40.PubMedCrossRefGoogle Scholar
  49. 48.
    Kapadia SB, Brideau-Andersen A, Chisari FV. Interference of hepatitis C virus RNA replication by short interfering RNAs. Proc Natl Acad Sci USA 2003; 100(4):2014–8.PubMedCrossRefGoogle Scholar
  50. 49.
    Song E, Lee SK, Wang J et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med 2003; 9(3):347–51.PubMedCrossRefGoogle Scholar
  51. 50.
    Los M, Burek CJ, Stroh C et al. Anticancer drugs of tomorrow: Apoptotic pathways as targets for drug design. Drug Discov Today 2003; 8(2):67–77.PubMedCrossRefGoogle Scholar
  52. 51.
    Kamath RS, Fraser AG, Dong Y et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 2003; 421(6920):231–7.PubMedCrossRefGoogle Scholar
  53. 52.
    Ashrafi K, Chang FY, Watts JL et al. Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 2003; 421(6920):268–72.PubMedCrossRefGoogle Scholar
  54. 53.
    Pothof J, Van Haaften G, Thijssen K et al. Identification of genes that protect the C. elegans genome against mutations by genome-wide RNAi. Genes Dev 2003; 17(4):443–8.PubMedCrossRefGoogle Scholar
  55. 54.
    Lee SS, Lee RY, Fraser AG et al. A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet 2003; 33(1):40–8.PubMedCrossRefGoogle Scholar
  56. 55.
    Pekarik V, Bourikas D, Miglino N et al. Screening for gene function in chicken embryo using RNAi and electroporation. Nat Biotechnol 2003; 21(1):93–6.PubMedCrossRefGoogle Scholar
  57. 56.
    Calegari F, Haubensak W, Yang D et al. Tissue-specific RNA interference in postimplantation mouse embryos with endoribonuclease-prepared short interfering RNA. Proc Natl Acad Sci USA 2002; 99(22):14236–40.PubMedCrossRefGoogle Scholar
  58. 57.
    Bailey SN, Wu RZ, Sabatini DM. Applications of transfected cell microarrays in high-throughput drug discovery. Drug Discov Today 2002; 7(Suppl 18):S113–8.PubMedCrossRefGoogle Scholar
  59. 58.
    Wu RZ, Bailey SN, Sabatini DM. Cell-biological applications of transfected-cell microarrays. Trends Cell Biol 2002; 12(10):485–8.PubMedCrossRefGoogle Scholar
  60. 59.
    Amarzguioui M, Holen T, Babaie E et al. Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res 2003; 31(2):589–95.PubMedCrossRefGoogle Scholar
  61. 60.
    Capodici J, Kariko K, Weissman D. Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference. J Immunol 2002; 169(9):5196–201.PubMedGoogle Scholar
  62. 61.
    Zeng Y, Cullen BR. RNA interference in human cells is restricted to the cytoplasm. Rna 2002; 8(7):855–60.PubMedCrossRefGoogle Scholar
  63. 62.
    Michienzi A, Cagnon L, Bahner I et al. Ribozyme-mediated inhibition of HIV 1 suggests nucleolar trafficking of HIV-1 RNA. Proc Natl Acad Sci USA 2000; 97(16):8955–60.PubMedCrossRefGoogle Scholar
  64. 63.
    Lee NS, Sun B, Williamson R et al. Functional colocalization of ribozymes and target mRNAs in Drosophila oocytes. Faseb J 2001; 15(13):2390–400.PubMedCrossRefGoogle Scholar
  65. 64.
    Lee NS, Bertrand E, Rossi J. mRNA localization signals can enhance the intracellular effectiveness of hammerhead ribozymes. Rna 1999; 5(9):1200–9.PubMedCrossRefGoogle Scholar
  66. 65.
    Castanotto D, Scherr M, Rossi JJ. Intracellular expression and function of antisense catalytic RNAs. Methods Enzymol 2000; 313:401–20.PubMedCrossRefGoogle Scholar
  67. 66.
    Kawasaki H, Taira K. Short hairpin type of dsRNAs that are controlled by tRNA(Val) promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells. Nucleic Acids Res 2003; 31(2):700–7.PubMedCrossRefGoogle Scholar
  68. 67.
    Doench JG, Petersen CP, Sharp PA. siRNAs can function as miRNAs. Genes Dev 2003; 17(4):438–42.PubMedCrossRefGoogle Scholar
  69. 68.
    Zeng Y, Cullen BR. Sequence requirements for micro RNA processing and function in human cells. Rna 2003; 9(1):112–123.PubMedCrossRefGoogle Scholar

Copyright information

© and Kluwer Academic / Plenum Publishers 2006

Authors and Affiliations

  • Lisa Scherer
    • 1
  • John J. Rossi
    • 1
  1. 1.Division of Molecular BiologyBeckman Research Institute of the City of HopeDuarteUSA

Personalised recommendations