The Middle Atmosphere and its Evolution

Part of the Atmospheric and Oceanographic Sciences Library book series (ATSL, volume 32)


Nitrogen Oxide Middle Atmosphere Ozone Content Ozone Hole Methyl Chloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreae, M.O., and P. Merlet, Emission of trace gases and aerosols from biomass burning. Glob Biogeochem Cycles: 15, 955, 2001.CrossRefGoogle Scholar
  2. Brasseur, G.P., R.A. Cox, D. Hauglustaine, I. Isaksen, J. Lelieveld, D.H. Lister, R. Sausen, U. Schumann, A. Wahner, and P. Wiesen, European scientific assessment of the atmospheric effects of aircraft emissions. Atmos Env: 32, 2327, 1998.CrossRefGoogle Scholar
  3. Crutzen, P.J., The influence of nitrogen oxide ond the atmospheric ozone content. Quart J Roy Met Soc: 96, 320, 1970.Google Scholar
  4. Crutzen, P.J., Estimates of possible variations in total ozone due to natural causes and human activity. Ambio: 3, 201, 1974.Google Scholar
  5. Crutzen, P.J., L.E. Heidt, J.P. Krasnec, W.H. Pollock, and W. Seiler, Biomass burning as a source of the atmospheric gases CO, H2, N2O, NO, CH3Cl, and COS. Nature: 282, 253, 1979.CrossRefGoogle Scholar
  6. IPCC (Intergovernmental Panel on Climate Change), Aviation and the Global Atmosphere. J. Penner et al. (eds.), Cambridge University Press, 1999.Google Scholar
  7. IPCC (Intergovernmental Panel on Climate Change), Climatic Change 2001: The scientific basis. J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. Van de Linden, X. Da, K. Maskell, and C.A. Johnson (eds.), Cambridge University Press, 2001.Google Scholar
  8. Johnston, H.S., Reduction of stratospheric ozone by nitrogen oxide catalysts from supersonic transport exhaust. Science: 173, 517, 1971.Google Scholar
  9. Kandel, R.S., Earth and Cosmos. Pergamon Press, 1980.Google Scholar
  10. Kasting, J.F., Earth’s early atmosphere. Science: 259, 920, 1993.Google Scholar
  11. Lovelock, J.E., and L. Margulis, Atmospheric homeostatis by and for the atmosphere: The gaia hypothesis. Tellus: 26, 2, 1974.CrossRefGoogle Scholar
  12. McElroy, M.B., J.W. Elkins, S.C. Wofsy, and Y.L. Yung, Sources and sinks for atmospheric N2O. Rev Geophys Space Phys: 14, 143, 1976.Google Scholar
  13. Miller, S.L., A production of amino acids under possible primitive earth conditions. Science: 117, 528, 1953.Google Scholar
  14. Miller, S.L., and H.C. Urey, Organic compound synthesis on the primitive earth. Science: 130, 245, 1959.Google Scholar
  15. Molina, M.J., and F.S. Rowland, Stratospheric sink for chlorofluoromethanes: Chlorine atom catalyzed destruction of ozone. Nature: 249, 810, 1974.CrossRefGoogle Scholar
  16. Moulton, F.R., On the evolution of the solar system. Astrophys J: 22, 165, 1905.Google Scholar
  17. Sagan, C., Ultraviolet selection pressure on the earliest organisms. J Theo Bio: 39, 195, 1973.Google Scholar
  18. Stolarski, R.S., and R.J. Cicerone, Stratospheric chlorine: A possible sink for ozone. Can J Chem: 52, 1610, 1974.Google Scholar
  19. Vitousek, P.M., Beyond global warming: Ecology and global change. Ecology: 75, 1861, 1994.Google Scholar
  20. Walker, J.C.G., Evolution of the Atmosphere. McMillan Pub., 1977.Google Scholar
  21. Wofsy, S.C., M.B. McElroy, and Y.L. Yung, The chemistry of atmospheric bromine. Geophys Res Lett: 2, 215, 1975.Google Scholar

Copyright information

© Springer 2005

Personalised recommendations