Advertisement

Chemical Concepts in the Atmosphere

Chapter
  • 1.1k Downloads
Part of the Atmospheric and Oceanographic Sciences Library book series (ATSL, volume 32)

Keywords

Diatomic Molecule Internuclear Distance Potential Energy Curve Middle Atmosphere Lower Thermosphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barth, C.A., and A.F. Hildebrand, The 5577 Å airglow emission mechanism. J Geophys Res: 66, 985, 1961.Google Scholar
  2. Barth, C.A., Nitric oxide in the upper atmosphere. Ann Geophys: 22, 198, 1966.Google Scholar
  3. Bates, D.R., The green light of the night sky. Planet Space Sci: 29, 1061, 1981.Google Scholar
  4. Carslaw, K.S., B.P. Luo, S.L. Clegg, T. Peter, P. Brimblecombe, and P.J. Crutzen, Stratospheric aerosol growth and HNO3 gas phase depletion from coupled HNO3 and water uptake by liquid particles. Geophys Res Lett: 21, 2479, 1994.CrossRefGoogle Scholar
  5. Carslaw, K.S., T. Peter, and S. L. Clegg, Modeling the composition of liquid stratospheric aerosols. Rev Geophys: 35, 125, 1997.CrossRefGoogle Scholar
  6. Castellan, G.W., Physical Chemistry. Addison-Wesley, 1971.Google Scholar
  7. Considine, D.B., A.R. Douglass, P.S. Connell, D.K. Kinnison, and D.A. Rotman, A polar stratospheric cloud parameterization for the global modeling initiative three-dimensional model and its response to stratospheric aircraft. J Geophys Res: 105, 3955, 2000.CrossRefGoogle Scholar
  8. Ebbing, D.D., General Chemistry. 3rd ed. Houghton Mifflin Co., 1990.Google Scholar
  9. Evans, W.F.J., D.M. Hunten, E.J. Llewellyn, and A. Vallance-Jones, Altitude profile of the infrared atmospheric system of oxygen in the dayglow. J Geophys Res: 73, 2885, 1968.Google Scholar
  10. Finlayson-Pitts, B.J., and J.N. Pitts, Jr., Chemistry of the Upper and Lower Atmosphere, Theory, Experiments, and Applications. Academic Press, 1999.Google Scholar
  11. Frederick, J.E., and D.W. Rusch, On the chemistry of metastable atomic nitrogen in the F-region deduced from simultaneous satellite measurements of the 5200 Å airglow and atmospheric composition. J Geophys Res: 82, 3509, 1977.Google Scholar
  12. Gilmore, F.R., Potential energy curves for N2, NO, O 2 , and corresponding ions. RAND corporation memorandum R-4034-PR, June, 1964.Google Scholar
  13. Hanson, D.R., and K. Mauersberger, Laboratory studies of the nitric acid trihydrate: Implications for the south polar stratosphere. Geophys Res Lett: 15, 855, 1988.Google Scholar
  14. Hanson, D.R., and A.R. Ravishankara, Reactive uptake of ClONO2 onto sulfuric acid due to reaction with HCl and H2O. J Phys Chem: 98, 5728, 1994.CrossRefGoogle Scholar
  15. Hanson, D.R., A.R. Ravishankara, and S. Solomon, Heterogeneous reactions in sulfuric acid aerosols: A framework for model calculations. J Geophys Res: 99, 3615, 1994.CrossRefGoogle Scholar
  16. Hanson, D.R., Reaction of N2O5 with H2O on bulk liquids and on particles and the effect of dissolved HNO3, Geophys Res Lett: 24, 1087, 1997a.CrossRefGoogle Scholar
  17. Hanson, D.R., Surface-specific reactions on liquid. J Phys Chem: 101, 4998, 1997b.Google Scholar
  18. Herzberg, G., Spectra of Diatomic Molecules. D. Van Nostrand Co., 1950.Google Scholar
  19. Hoffman, D.J., and S. Solomon, Ozone destruction through heterogeneous chemistry following the eruption of El Chichón. J Geophys Res: 94, 5029, 1989.Google Scholar
  20. Hu, J.H., Q. Shi, P. Davidovits, D.W. Worsnop, M.S. Zahniser, and C.E. Kolb, Reactive uptake of Cl2 (g) and Br2 (g) by aqueous surfaces as a function of Br and I ion concentrations: The effect of chemical reaction at the interface. J Phys Chem: 99, 8768, 1995.Google Scholar
  21. Jet Propulsion Laboratory (JPL), Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation 14: NASA Jet Propulsion Laboratory Publication 02-25, 2002.Google Scholar
  22. Johnston, H. S., Gas Phase Reaction Rate Theory. Ronald Press, 1966.Google Scholar
  23. Karplus, M., and R.N. Porter, Atoms and Molecules: An Introduction for Students of Physical Chemistry. W.A. Benjamin, Inc., 1970.Google Scholar
  24. Llewellyn, E.J., B.H. Long, and B.H. Solheim, The quenching of OH* in the atmosphere. Planet Space Sci: 26, 525, 1978.Google Scholar
  25. Lowe, R.P., and D.N. Turnbull, Comparison of ALOHA-93, ANLC-93 and ALOHA-90 observations of the hydroxyl rotational temperature and gravity wave activity. Geophys Res Lett: 22, 2813, 1995.CrossRefGoogle Scholar
  26. Mlynczak, M.G., S. Solomon, and D.S. Zaras, An updated model for the O2 (a1Δg) concentrations in the mesophere and lower thermosphere and implications for remote sensing of ozone at 1.27µm. J Geophys Res: 98, 18,639, 1993.Google Scholar
  27. Mlynczak, M.G., and D.S. Olander, On the utility of the molecular oxygen dayglow as proxies for middle atmosphere ozone. Geophys Res Lett: 22, 1377, 1995.Google Scholar
  28. Mlynczak, M.G., D.K. Zhou, and S.M. Adler-Golden, Kinetic and spectroscopic requirements for the inference of chemical heating rates and atomic hydrogen densities from OH Meinel band measurements. Geophys Res Lett: 25, 647, 1998.Google Scholar
  29. Moore, W.J., Physical Chemistry. Prentice Hall, 1962.Google Scholar
  30. Mozurkiewicz, M., and J.G. Calvert, Reaction probability of N2O5 on aqueous aerosols. J Geophys Res: 93, 15,889, 1998.Google Scholar
  31. Nelson, D.D., Jr., A. Schiffman, D.J. Nesbitt, J.J. Orlando, and J.B. Burkholder, H + O3 Fourier-transform infrared emission and laser absorption studies of OH (X2π) radical: An experimental dipole moment function and state-to-state Einstein A coefficients. J Chem Phys: 93, 7003, 1990.Google Scholar
  32. Peter, T., Microphysics and heterogeneous chemistry of polar stratospheric clouds. Ann Rev Phys: 48, 785, 1997.Google Scholar
  33. Rice, O.K., and H.C. Ramsperger, Theories of unimolecular gas reactions at low pressures. J Am Chem Soc: 49, 1617, 1927.CrossRefGoogle Scholar
  34. Schwartz, S.E., Mass transport considerations pertinent to aqueous-phase reactions of gases in liquid-water clouds, in Chemistry of Multiphase Atmospheric Systems. W. Jaeschke, ed. Springer-Verlag, 1986.Google Scholar
  35. Seinfeld, J.H., and S.N. Pandis, Atmospheric Chemistry and Physics — From Air Pollution to Climate Change. J. Wiley and Sons, 1998.Google Scholar
  36. Slanger, T.G., and G. Black, O1S in the lower thermosphere — Chapman vs. Barth. Planet Space Sci: 25, 79, 1977.CrossRefGoogle Scholar
  37. Smith, I.W.M., Kinetics and Dynamics of Elementary Gas Reactions. Butterworths, 1980.Google Scholar
  38. Steele, H.M., and P. Hamill, Effects of temperature and humidity on the growth and optical properties of sulfuric acid-water droplets in the stratosphere. J Atmos Sci: 12, 517, 1981.Google Scholar
  39. Steinfeld, J.I., Molecules and Radiation: An Introduction to Modern Molecular Spectroscopy. MIT Press, 1978.Google Scholar
  40. Thomas, R.J., C.A. Barth, G.J. Rottman, D.W. Rusch, G.H. Mount, G.M. Lawrence, R.W. Sanders, G.E. Thomas, and L.E. Clemens, Ozone density in the mesosphere (50–90 km) measured by the SME limb scanning near infrared spectrometer. Geophys Res Lett: 10, 245, 1983.Google Scholar
  41. Troe, J., Predictive possibilities of unimolecular rate theory. J Phys Chem: 83, 114, 1979.CrossRefGoogle Scholar
  42. Viereck, R.A., and C.S. Deehr, On the interaction between gravity waves and the OH Meinel (6–2) and the O2 atmospheric (0–1) bands in the polar night airglow. J Geophys Res: 94, 5397, 1989.Google Scholar
  43. Weston, R.E., and H.A. Schwarz, Chemical Kinetics. Prentice Hall, 1972.Google Scholar
  44. Zipf, E.C., P.J. Espy, and C.F. Boyle, The excitation and collisional deactivation of metastable N2P atoms in auroras. J Geophys Res: 85, 687, 1980.Google Scholar

Copyright information

© Springer 2005

Personalised recommendations