LEADSTO: A Language and Environment for Analysis of Dynamics by SimulaTiOn

  • Tibor Bosse
  • Catholijn M. Jonker
  • Lourens van der Meij
  • Jan Treur
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3550)


This paper presents the language and software environment LEADSTO that has been developed to model and simulate the dynamics of Multi-Agent Systems (MAS) in terms of both qualitative and quantitative concepts. The LEADSTO language is a declarative order-sorted temporal language, extended with quantitative means. Dynamics of MAS can be modelled by specifying the direct temporal dependencies between state properties in successive states. Based on the LEADSTO language, a software environment was developed that performs simulations of LEADSTO specifications, generates simulation traces for further analysis, and constructs visual representations of traces. The approach proved its value in a number of projects within different domains of MAS research.


Temporal Logic Simulation Tool Software Environment Duration Calculus Interval Temporal Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Barringer, H., Fisher, M., Gabbay, D., Owens, R., Reynolds, M.: The Imperative Future: Principles of Executable Temporal Logic. Research Studies Press Ltd./John Wiley & Sons, Chichester (1996)Google Scholar
  2. 2.
    Bosse, T., Jonker, C.M., Los, S.A., van der Torre, L., Treur, J.: Formalisation and Analysis of the Temporal Dynamics of Conditioning. In: Müller, J.P., Zambonelli, F. (eds.) AOSE 2005. LNCS, vol. 3950, pp. 54–68. Springer, Heidelberg (2006)Google Scholar
  3. 3.
    Bosse, T., Jonker, C.M., Schut, M.C., Treur, J.: Simulation and Analysis of Shared Extended Mind. In: Davidsson, P., Gasser, L., Logan, B., Takadama, K. (eds.) Proc. of the First Joint Workshop on Multi-Agent and Multi-Agent-Based Simulation, MAMABS 2004, pp. 191–200 (2004)Google Scholar
  4. 4.
    Dierks, H.: PLC-automata: A new class of implementable real-time automata. In: Rus, T., Bertrán, M. (eds.) AMAST-ARTS 1997, ARTS 1997, and AMAST-WS 1997. LNCS, vol. 1231, pp. 111–125. Springer, Heidelberg (1997)Google Scholar
  5. 5.
    Forbus, K.D.: Qualitative process theory. Artificial Intelligence 24(1-3), 85–168 (1984)CrossRefGoogle Scholar
  6. 6.
    Meyer, J.J.C., Treur, J. (eds.): Agent-based Defeasible Control in Dynamic Environments. Gabbay, D., Smets, P. (series eds.) Series in Defeasible Reasoning and Uncertainty Management Systems, vol. 7. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  7. 7.
    Moszkowski, B., Manna, Z.: Reasoning in Interval Temporal Logic. In: Clarke, E., Kozen, D. (eds.) Logic of Programs 1983. LNCS, vol. 164, pp. 371–382. Springer, Heidelberg (1984)Google Scholar
  8. 8.
    Pandya, P.K.: Model checking CTL[DC]. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, p. 559. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Port, R.F., van Gelder, T. (eds.): Mind as Motion: Explorations in the Dynamics of Cognition. MIT Press, Cambridge (1995)Google Scholar
  10. 10.
    van Vliet, H.: Software Engineering: Principles and Practice. John Wiley & Sons, Ltd, Chichester (2000)Google Scholar
  11. 11.
    Zhou, C., Hoare, C.A.R., Ravn, A.P.: A Calculus of Durations. Information Processing Letter 40(5), 269–276 (1991)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Tibor Bosse
    • 1
  • Catholijn M. Jonker
    • 2
  • Lourens van der Meij
    • 1
  • Jan Treur
    • 1
  1. 1.Department of Artificial IntelligenceVrije Universiteit AmsterdamAmsterdamThe Netherlands
  2. 2.Nijmegen Institute for Cognition and Information, Division Cognitive EngineeringNijmegenThe Netherlands

Personalised recommendations