An Effective Overlay H.263+ Video Multicast System over the Internet

  • Hwangjun Song
  • Hojong Kang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3665)


This paper presents an effective overlay H.263+ video multicast system over the Internet. The proposed system consists of overlay multicast tree construction, target bandwidth determining process, and H.263+ rate control. Overlay multicast tree construction algorithm and target bandwidth determining process work alternatively to satisfy the average delay constraint, and H.263+ rate control is implemented to enhance the human visual perceptual quality over the multicast tree. Finally, experimental results are provided to show the performance of the proposed system.


Video Quality Multicast Tree Delay Constraint Video Encoder Rate Control Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chu, Y., Rao, S., Seshan, S., Zhang, H.: A case for end-system multicast. In: ACM SIGMETRICS, Santa Clara (June 2000)Google Scholar
  2. 2.
    Deering, S.: Host Extensions for IP Multicasting. RFC1112 (August 1989)Google Scholar
  3. 3.
    Banerjee, S., Bhattacharjee, B.: A comparative study of application layer multicast protocol, available at
  4. 4.
    Chawathe, Y.: Scattercast: An architecture for Internet Broadcast distribution as an Infrastructure service. Ph. D. dissertation, University of California, Berkeley (December 2000)Google Scholar
  5. 5.
    Francis, P.: Yoid: Extending the multicast Internet architecture (1999), available at
  6. 6.
    Pendarakis, D., Shi, S., Verma, D., Waldvogel, M.: ALMI: An Application level multicast infrastructure. In: Proceedings of 3rd Usenix Symposium on Internet Technologies & Systefeeder (USITS 2001), San Francisco (March 2001)Google Scholar
  7. 7.
    Zhang, B., Jamin, S., Zhang, L.: Host multicast: A framework for delivering multicast to end users. In: Proceedings of IEEE Infocomm (June 2002)Google Scholar
  8. 8.
    Banerjee, S., Bhattacharjee, B., Kommareddy, C.: Scalable application layer multicast. In: Proceedings of ACM SIGCOMM (August 2002)Google Scholar
  9. 9.
    Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-addressable network. In: Proceedings of ACM SIGCOMM (August 2001)Google Scholar
  10. 10.
    Castro, M., Druschel, P., Kermarrec, A., Rowstron, A.: Scribe: A large scale and decentralized application-level multicast infrastructure. IEEE Journal on Selected Areas in Communications 20(8), 1489–1499 (2002)CrossRefGoogle Scholar
  11. 11.
    Mathy, L., Canonico, R., Simpson, S., Hutchison, D.: Scalable adaptive hierarchical clustering. IEEE Communication Letter 6(3), 117–119 (2002)CrossRefGoogle Scholar
  12. 12.
    Park, J., Koh, S.J., Kang, S.G., Kim, D.Y.: Multicast Delivery Based on Unicast and Subnet Multicast. IEEE Communications Letters 5(4), 181–183 (2001)CrossRefGoogle Scholar
  13. 13.
    Shi, S.Y., Turner, J.S.: Multicast routing and bandwidth dimensioning in overlay network. IEEE Journal on Selected Areas in Communications 20(8), 1444–1455 (2002)CrossRefGoogle Scholar
  14. 14.
    Banerjee, S., Bhattacharjee, B.: Scalable secure group multicast over IP multicast. IEEE Journal on Selected Areas in Communications 20(8), 1511–1527 (2002)CrossRefGoogle Scholar
  15. 15.
    Liebeherr, J., Nahas, M.: Application-layer Multicast with Delaunay Triangulations. In: IEEE GLOBECOM (2001)Google Scholar
  16. 16.
    Yeo, C.K., Lee, B.S., Er, M.H.: A framework for multicast video streaming over IP networks. Journal of Network and Computer Applications 26, 273–289 (2003)CrossRefGoogle Scholar
  17. 17.
    Banerjee, S., Kommareddy, C., Kar, K., Bhattacharjee, B., Khuller, S.: Construction of an efficient overlay multicast infrastructure for real-time applications. In: Proceedings of IEEE Infocomm (June 2003)Google Scholar
  18. 18.
    Casro, M., Jones, M.B., Kermarrec, A., Rowstron, A., Theimer, M., Wang, H., Wolman, A.: An evaluation of scalable application-level multicast built using peer-to-peer over-lays. In: Proceedings of IEEE Infocomm (June 2003)Google Scholar
  19. 19.
    Kurose, J.F., Ross, K.W.: Computer Networking: A Top-down approach featuring the Internet, 2nd edn. Addison Wesley, Reading (2002)Google Scholar
  20. 20.
    Song, H., Lee, D.S.: Overlay multicast tree minimizing average time delay. In: Mitrou, N.M., Kontovasilis, K., Rouskas, G.N., Iliadis, I., Merakos, L. (eds.) NETWORKING 2004. LNCS, vol. 3042, pp. 211–222. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Sun, M., Reibman, A.R.: Compressed video over Networks. Marcel Dekker, Inc., New York (2001)Google Scholar
  22. 22.
    Song, H., Kim, J., Jay Kuo, C.C.: Real-time encoding frame rate control for H.263+ video over the Internet. Signal Processing: Image Communication 15(1-2), 127–148 (1999)CrossRefGoogle Scholar
  23. 23.
    ITU-T, Video codec Test model, near-term, version 8 (TMN8), H.263 AdHoc Group, Port-land (June 1997) Google Scholar
  24. 24.
    Chiang, T., Zhang, Y.-Q.: A new rate control scheme using quadratic rate distortion model. IEEE Trans. on Circuits and Systems for Video Technology 7, 246–250 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Hwangjun Song
    • 1
  • Hojong Kang
    • 2
  1. 1.Dept. of Computer Science and EngineeringPOSTECHKorea
  2. 2.School of Electronic and Electrical EngineeringHongik UniversitySeoulKorea

Personalised recommendations