Advertisement

Likely Scenarios of Intron Evolution

  • Miklós Csűrös
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3678)

Abstract

Whether common ancestors of eukaryotes and prokaryotes had introns is one of the oldest unanswered questions in molecular evolution. Recently completed genome sequences have been used for comprehensive analyses of exon-intron organization in orthologous genes of diverse organisms, leading to more refined work on intron evolution. Large sets of intron presence-absence data require rigorous theoretical frameworks in which different hypotheses can be compared and validated. We describe a probabilistic model for intron gains and losses along an evolutionary tree. The model parameters are estimated using maximum likelihood. We propose a method for estimating the number of introns lost or unobserved in all extant organisms in a study, and show how to calculate counts of intron gains and losses along the branches by using posterior probabilities. The methods are used to analyze the most comprehensive intron data set available presently, consisting of 7236 intron sites from eight eukaryotic organisms. The analysis shows a dynamic history with frequent intron losses and gains, and fairly — albeit not as greatly as previously postulated — intron-rich ancestral organisms.

Keywords

Intron Loss Much Recent Common Ancestor Conditional Likelihood Intron Gain Spliceosomal Intron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Crick, W.: Split genes and RNA splicing. Science 204, 264–271 (1979)CrossRefGoogle Scholar
  2. 2.
    Lynch, M., Richardson, A.O.: The evolution of spliceosomal introns. Current Opinion in Genetics and Development 12, 701–710 (2002)CrossRefGoogle Scholar
  3. 3.
    de Souza, S.J.: The emergence of a synthetic theory of intron evolution. Genetica 118, 117–121 (2003)CrossRefGoogle Scholar
  4. 4.
    Rogozin, I.B., Wolf, Y.I., Sorokin, A.V., Mirkin, B.G., Koonin, E.V.: Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Current Biology 13, 1512–1517 (2003)CrossRefGoogle Scholar
  5. 5.
    Qiu, W.G., Schisler, N., Stoltzfus, A.: The evolutionary gain of spliceosomal introns: Sequence and phase preferences. Molecular Biology and Evolution 21, 1252–1263 (2004)CrossRefGoogle Scholar
  6. 6.
    Nielsen, C.B., Friendman, B., Birren, B., Burge, C.B., Galagan, J.E.: Patterns of intron gain and loss in fungi. PLoS Biology 2, e422 (2004)Google Scholar
  7. 7.
    Coghlan, A., Wolfe, K.H.: Origins of recently gained introns in Caenorhabditis. Proceedings of the National Academy of Sciences of the USA 101, 11362–11367 (2004)CrossRefGoogle Scholar
  8. 8.
    Vaňáčová, Š., Yan, W., Carlton, J.M., Johnson, P.J.: Spliceosomal introns in the deep-branching eukaryote Trichomonas vaginalis. Proceedings of the National Academy of Sciences of the USA 102, 4430–4435 (2005)CrossRefGoogle Scholar
  9. 9.
    Ross, S.M.: Stochastic Processes, 2nd edn. Wiley & Sons, Chichester (1996)zbMATHGoogle Scholar
  10. 10.
    Rzhetsky, A., Ayala, F.J., Hsu, L.C., Chang, C., Yoshida, A.: Exon/intron structure of aldehyde dehydrogenase genes supports the “introns-late” theory. Proceedings of the National Academy of Sciences of the USA 94, 6820–6825 (1997)CrossRefGoogle Scholar
  11. 11.
    Rogozin, I.B., Lyons-Weiler, J., Koonin, E.W.: Intron sliding in conserved gene families. Trends in Genetics 16, 430–432 (2000)CrossRefGoogle Scholar
  12. 12.
    Felsenstein, J.: Inferring Pylogenies. Sinauer Associates, Sunderland (2004)Google Scholar
  13. 13.
    Tuffley, C., Steel, M.: Links between maximum likelihood and maximum parsimony under a simple model of site substitution. Bulletin of Mathematical Biology 59, 581–607 (1997)zbMATHCrossRefGoogle Scholar
  14. 14.
    Roch, S.: A short proof that phylogenetic reconstruction by maximum likelihood is hard. Technical report (2005), math.PR/0504378atarXiv.org
  15. 15.
    Chor, B., Tuller, T.: Maximum likelihood of evolutionary trees is hard. In: Proc. Ninth Annual International Conference on Research in Computational Biology (RECOMB) (2005) (in press)Google Scholar
  16. 16.
    Roy, S.W., Gilbert, W.: Complex early genes. Proceedings of the National Academy of Sciences of the USA 102, 1986–1991 (2005)CrossRefGoogle Scholar
  17. 17.
    Roy, S.W., Gilbert, W.: Rates of intron loss and gain: Implications for early eukaryotic evolution. Proceedings of the National Academy of Sciences of the USA 102, 5773–5778 (2005)CrossRefGoogle Scholar
  18. 18.
    Sverdlov, A.V., Rogozin, I.B., Babenko, V.N., Koonin, E.V.: Conservation versus parallel gains in intron evolution. Nucleic Acids Research 33, 1741–1748 (2005)CrossRefGoogle Scholar
  19. 19.
    Koshi, J.M., Goldstein, R.A.: Probabilistic reconstruction of ancestral protein sequences. Journal of Molecular Evolution 42, 313–320 (1996)CrossRefGoogle Scholar
  20. 20.
    Wolf, Y.I., Rogozin, I.B., Koonin, E.V.: Coelomata and not Ecdysozoa: Evidence from genome-wide phylogenetic analysis. Genome Research 14, 29–36 (2004)CrossRefGoogle Scholar
  21. 21.
    Roy, S.W., Gilbert, W.: Resolution of a deep animal divergence by the pattern of intron conservation. Proceedings of the National Academy of Sciences of the USA 102, 4403–4408 (2005)CrossRefGoogle Scholar
  22. 22.
    Philippe, H., Lartillot, N., Brinkmann, H.: Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. Molecular Biology and Evolution 22, 1246–1253 (2005)CrossRefGoogle Scholar
  23. 23.
    Philip, G.K., Creevey, C.J., McInerney, J.O.: The Opisthokonta and the Ecdysozoa may not be clades: Stronger support for the grouping of plant and animal than for animal and fungi and stronger support for the Coelomata than Ecdysozoa. Molecular Biology and Evolution 22, 1175–1184 (2005)CrossRefGoogle Scholar
  24. 24.
    Le Quesne, W.J.: The uniquely evolved character concept and its cladistic application. Systematic Zoology 23, 513–517 (1974)CrossRefGoogle Scholar
  25. 25.
    Farris, J.S.: Phylogenetic analysis under Dollo’s law. Systematic Zoology 26, 77–88 (1977)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Miklós Csűrös
    • 1
  1. 1.Department of Computer Science and Operations ResearchUniversité de MontréalMontréal, Qué.Canada

Personalised recommendations