Advertisement

A Partial Solution to the C-Value Paradox

  • Jeffrey M. Marcus
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3678)

Abstract

In the half-century since the C-value paradox (the apparent lack of correlation between organismal genome size and morphological complexity) was described, there have been no explicit statistical comparisons between measures of genome size and organism complexity. It is reported here that there are significant positive correlations between measures of genome size and complexity with measures of non-hierarchical morphological complexity in 139 prokaryotic and eukaryotic organisms with sequenced genomes. These correlations are robust to correction for phylogenetic history by independent contrasts, and are largely unaffected by the choice of data set for phylogenetic reconstruction. These results suggest that the C-value paradox may be more apparent than real, at least for organisms with relatively small genomes like those considered here. A complete resolution of the C-value paradox will require the consideration and inclusion of organisms with large genomes into analyses like those presented here.

Keywords

Genome Size Morphological Complexity Cell Part Small Subunit rRNA Deoxyribose Nucleic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avery, O.T., MacLeod, C.M., McCarty, M.: Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction of Transformation by a Deoxyribonucleic Acid Fraction Isolated from Pneumococcus Type III. J. Exp. Med. 79(1), 137–158 (1944)CrossRefGoogle Scholar
  2. 2.
    Watson, J.D., Crick, F.H.C.: A structure for Deoxyribose Nucleic Acid. Nature 171, 737–738 (1953)CrossRefGoogle Scholar
  3. 3.
    Mirsky, A.E., Ris, H.: The deoxyribonucleic acid content of animal cells and its evolutionary significance. J. gen. Physiol. 34, 451–462 (1951)CrossRefGoogle Scholar
  4. 4.
    Thomas, C.A.: The genetic organization of chromosomes. Annu. Rev. Genet. 5, 237–256 (1971)CrossRefGoogle Scholar
  5. 5.
    Cavalier-Smith, T. (ed.): The evolution of genome size. John Wiley, New York (1985)Google Scholar
  6. 6.
    Gregory, T.R.: Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol. Rev. 76, 65–101 (2001)CrossRefGoogle Scholar
  7. 7.
    Pagel, M., Johnstone, R.A.: Variation across species in the size of the nuclear genome supports the junk-DNA explanation for the C-value paradox. Proc. R. Soc. Lond. 249, 119–124 (1992)CrossRefGoogle Scholar
  8. 8.
    Goin, O.B., Goin, C.J., Bachmann, K.: DNA and amphibian life history. Copeia, 532–540 (1968)Google Scholar
  9. 9.
    Ohno, S.: Evolution by gene duplication. Springer, New York (1970)Google Scholar
  10. 10.
    Lovejoy, A.O.: The Great Chain of Being, p. 376. Harvard University Press, Cambridge (1936)Google Scholar
  11. 11.
    Cavalier-Smith, T.: Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J. Cell Sci. 43, 247–278 (1978)Google Scholar
  12. 12.
    Cavalier-Smith, T.: r- and K-tactics in the evolution of protist developmental systems: cell and genome size, phenotype diversifying selection, and cell cycle patterns. Biosystems 12, 43–59 (1980)CrossRefGoogle Scholar
  13. 13.
    Sessions, S.K., Larson, A.: Developmental correlates of genome size in plethodontid salamanders and their implications for genome evolution. Evolution 41, 1239–1251 (1987)CrossRefGoogle Scholar
  14. 14.
    Gregory, T.R.: Genome size and developmental complexity. Genetica 115, 131–146 (2002)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Gregory, T.R.: Macroevolution, hierarchy theory, and the C-value enigma. Paleobiology 30(2), 179–202 (2004)CrossRefGoogle Scholar
  16. 16.
    Doolittle, W.F., Sapienza, C.: Selfish genes, the phenotype paradigm and genome evolution. Nature 284, 601–603 (1980)CrossRefGoogle Scholar
  17. 17.
    Orgel, L.E., Crick, F.H.C.: Selfish DNA: the ultimate parasite. Nature 284, 604–607 (1980)CrossRefGoogle Scholar
  18. 18.
    Nelson, K.E., Paulsen, I.T., Heidelberg, J.F., Fraser, C.M.: Status of genome projects for nonpathogenic bacteria and archaea. Nature Biotechnology 18, 1049–1054 (2000)CrossRefGoogle Scholar
  19. 19.
    McShea, D.W.: Functional complexity in organisms: Parts as proxies. Biol. Philos 15(5), 641–668 (2000)CrossRefGoogle Scholar
  20. 20.
    Sneath, P.H.A.: Comparative biochemical genetics in bacterial taxonomy. In: Leone, C.A. (ed.) Taxonomic Biochemistry and Serology, pp. 565–583. Ronald Press, New York (1964)Google Scholar
  21. 21.
    Valentine, J.W., Collins, A.G., Porter Meyer, C.: Morphological complexity increase in metazoans. Paleobiology 20(2), 131–142 (1994)Google Scholar
  22. 22.
    Carroll, S.B.: Chance and necessity: the evolution of morphological complexity and diversity. Nature 409(6823), 1102–1109 (2001)CrossRefGoogle Scholar
  23. 23.
    Bell, G., Mooers, A.O.: Size and complexity among multicellular organisms. Biol. J. Linn. Soc. 60, 345–363 (1997)CrossRefGoogle Scholar
  24. 24.
    Bonner, J.T.: The evolution of complexity by means of natural selection, p. 260. Princeton University Press, Princeton (1988)Google Scholar
  25. 25.
    Harvey, P.H., Pagel, M.D.: The comparative method in evolutionary biology. Oxford University Press, Oxford (1991)Google Scholar
  26. 26.
    Felsenstein, J.: Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985)CrossRefGoogle Scholar
  27. 27.
    Garland Jr., T., Harvey, P.H., Ives, I.R.: Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst. Biol. 41, 18–32 (1992)Google Scholar
  28. 28.
    Valades, D.: Rhetorica Christiana. Pervsiae, apud Petrumiacobum Petrutium 10 (1579)Google Scholar
  29. 29.
    Fletcher, A.: Gender, Sex, and Subordination in England 1500-1800, p. 442. Yale University Press, New Haven (1995)Google Scholar
  30. 30.
    CBS Genome Atlas Database, Center for Biological Sequence Analysis Lyngby, Denmark (2003), http://www.cbs.dtu.dk/services/GenomeAtlas/
  31. 31.
    GOLD Genomes OnLine DataBase, Integrated Genomics, Chicago, IL (2003), http://igweb.integratedgenomics.com/GOLD/
  32. 32.
    Martins, E.P.: COMPARE, version 4.4. Computer programs for the statistical analysis of comparative data, Department of Biology, Indiana University, Bloomington IN (2001)Google Scholar
  33. 33.
    National Center for Biotechnology Information, National Library of Medicine, Washington, D.C (2003), http://www.ncbi.nlm.nih.gov/
  34. 34.
    Jeanmougin, F., et al.: Multiple sequence alignment with Clustal X. Trends Biochem. Sci. 23, 403–405 (1998)CrossRefGoogle Scholar
  35. 35.
    Swofford, D.L.: PAUP*, Phylogenetic analysis using parsimony (*and other methods), Sinauer Associates: Sunderland, Massachusetts (1998)Google Scholar
  36. 36.
    Brown, J.R., et al.: Universal trees based on large combined protein sequence data sets. Nat. Genet. 28, 281–285 (2001)CrossRefGoogle Scholar
  37. 37.
    Nelson, K.E., et al.: Status of genome projects for nonpathogenic bacteria and archaea. Nature Biotechnology 18(10), 1049–1054 (2000)CrossRefGoogle Scholar
  38. 38.
    Marcus, J.M., McCune, A.R.: Ontogeny and phylogeny in the northern swordtail clade of Xiphophorus. Syst. Biol. 48(3), 491–522 (1999)CrossRefGoogle Scholar
  39. 39.
    Rees, H., Jones, R.N.: The origin of the wide species variation in nuclear DNA content. Int. Rev. Cytol. 32, 53–92 (1972)CrossRefGoogle Scholar
  40. 40.
    Sparrow, A.H., Price, H.J., Underbrink, A.G.: A survey of DNA content per cell and per chromosome of prokaryotic and eukaryotic organisms: some evolutionary considerations. Brookhaven Symp. Biol. 23, 451–494 (1972)Google Scholar
  41. 41.
    Changizi, M.A.: Universal Scaling Laws for Hierarchical Complexity in Languages, Organisms, Behaviors and other Combinatorial Systems. J. Theor. Biol. 211, 277–295 (2001)CrossRefGoogle Scholar
  42. 42.
    Hedges, S.B., et al.: A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evol. Biol. 4, 2 (2004), doi:10.1186/1471-2148-4-2CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jeffrey M. Marcus
    • 1
  1. 1.Department of BiologyWestern Kentucky UniversityBowling GreenUSA

Personalised recommendations