Nouvelle Cuisine for the Computation of the Annihilating Ideal of fs

  • J. Gago-Vargas
  • M. I. Hartillo-Hermoso
  • J. M. Ucha-Enríquez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3718)


Let f 1,..., f p be polynomials in C[x 1,..., x n ] and let D = D n be the n-th Weyl algebra. The annihilating ideal of \(f^{s}=f_{1}^{s1}...f_{p}^{sp}\) in D[s]=D[s 1,...,s p ] is a necessary step for the computation of the Bernstein-Sato ideals of f 1,..., f p .

We point out experimental differences among the efficiency of the available methods to obtain this annihilating ideal and provide some upper bounds for the complexity of its computation.


Computer Algebra Diagonal Form Weyl Algebra Fourier Integral Operator Compositio Math 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ba1]
    Bahloul, R.: Algorithm for computing Bernstein-Sato ideals associated with a polynomial mapping. Journal of Symbolic Computation 32, 643–662 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  2. [Be1]
    Bernstein, I.N.: The analytic continuation of generalized functions with respect to a parameter. Funct. Anal. 6, 273–285 (1972)zbMATHGoogle Scholar
  3. [Bj1]
    Bjork, J.E.: Dimensions over Algebras of Differential Operators (1973) (preprint)Google Scholar
  4. [BM1]
    Briançon, J., Maisonobe, P.: Remarques sur l’idéal de Bernstein associé à des polynômes. PUMA, 650, (2002) (preprint)Google Scholar
  5. [BS1]
    Budur, N., Saito, M.: Multiplier ideals, V-filtration and spectrum. arXiv:math.AG/0305118 (2003)Google Scholar
  6. [BGV1]
    Bueso, J.L., Goméz-Torrecillas, J., Verschoren, A.: Algorithmic methods in non-commutative algebra. In: Applications to quantum groups. Mathematical modelling, Theory and applications, vol. 17. Kluwer Academic Publishers, Dordrecht (2004)Google Scholar
  7. [GHU1]
    Gago-Vargas, J., Hartillo-Hermoso, M.I., Ucha-Enríquez, J.M.: On the computation of the annihilating ideal of a product of polynomials (in preparation)Google Scholar
  8. [GLS1]
    Greuel, G.-M., Levandovskyy, V., Schönemann, H.: Singular::Plural 2.1. A Computer Algebra System for Noncommutative Polynomial Algebras. Centre for Computer Algebra, University of Kaiserslautern (2003),
  9. [Gr1]
    Grigoriev, D.: Complexity of solving systems of linear equations over the rings of differential operators. In: Effective methods in algebraic geometry, Castiglioncello (1990); Progr. Math. vol. 94, pp. 195–202. Birkhauser, Boston (1991)Google Scholar
  10. [H1]
    Hamm, H.A.: Remarks on asymptotic integrals, the polynomial of I.N. Bernstein and the Picard-Lefschetz monodromy. In: Several complex variables (Proc. Sympos. Pure Math. Vol. XXX, Part 1, Williams Coll., Williamstown, Mass. 1975), pp. 31–35. Amer. Math. Soc, Providence (1977)Google Scholar
  11. [K1]
    Kashiwara, M.: B-functions and holonomic systems. Rationality of roots of B-functions. Invent. Math. 38(1), 33–53 (1976)zbMATHMathSciNetGoogle Scholar
  12. [L1]
    Lichtin, B.: Generalized Dirichlet series and b-functions. Compositio Math. 65, 81–120 (1988)zbMATHMathSciNetGoogle Scholar
  13. [Mal1]
    Malgrange, B.: Le polynôme de Bernstein d’une singularité isolée. In: Fourier integral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice, 1974). Lecture Notes in Math., vol. 459, pp. 98–119. Springer, New York (1975)CrossRefGoogle Scholar
  14. [MM1]
    Mayr, E.W., Meyer, A.R.: The complexity of the word problems for commutative semigroups and polynomial ideals. Adv. in Math. 46(3), 305–329 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  15. [N1]
    Noro, M., Shimoyama, T., Takeshima, T.: A Computer Algebra System Risa/Asir (2000), Available at
  16. [O1]
    Oaku, T.: An algorithm of computing b-functions. Duke Math. J. 87, 115–132 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  17. [OT1]
    Oaku, T., Takayama, N.: An algorithm for de Rham cohomology groups of the complement of an affine variety via D-module computation. Journal of Pure and Applied Algebra 139, 201–233 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  18. [Sa1]
    Sabbah, C.: Proximité évanescente I. La structure polaire d’un D-Module. Apendice en collaboration avec F.J. Castro Jiménez. Compositio Math. 62, 283–328 (1987)zbMATHMathSciNetGoogle Scholar
  19. [Sa2]
    Sabbah, C.: Proximité évanescente II. Equations fonctionelles pour plusieurs fonctions analytiques. Compositio Math. 64, 213–241 (1987)zbMATHMathSciNetGoogle Scholar
  20. [Se1]
    Seidenberg, A.: Constructions in algebra. Trans. Amer. Math. Soc. 197, 273–313 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  21. [St1]
    Stafford, J.T.: Module structure of Weyl algebras. J. London Math. Soc. (2) 18(3), 429–442 (1978)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • J. Gago-Vargas
    • 1
  • M. I. Hartillo-Hermoso
    • 2
  • J. M. Ucha-Enríquez
    • 1
  1. 1.Depto. de ÁlgebraUniversidad de SevillaSevillaSpain
  2. 2.Depto. de MatemáticasUniversidad de CádizPuerto RealSpain

Personalised recommendations