Algebraic Topological Analysis of Time-Sequence of Digital Images

  • Rocio Gonzalez–Diaz
  • Belen Medrano
  • Pedro Real
  • Javier Sánchez–Peláez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3718)


This paper introduces an algebraic framework for a topological analysis of time-varying 2D digital binary–valued images, each of them defined as 2D arrays of pixels. Our answer is based on an algebraic-topological coding, called AT–model, for a nD (n=2,3) digital binary-valued image I consisting simply in taking I together with an algebraic object depending on it. Considering AT–models for all the 2D digital images in a time sequence, it is possible to get an AT–model for the 3D digital image consisting in concatenating the successive 2D digital images in the sequence. If the frames are represented in a quadtree format, a similar positive result can be derived.


Digital Image Simplicial Complex Chain Complex Simplicial Representation Geometric Realization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexandroff, P., Hopf, H.: Topologie I. Springer, Berlin (1935)zbMATHGoogle Scholar
  2. 2.
    Barnes, D., Lambe, L.: A fixed approach to homological perturbation theory. Proc. Amer. Math. Soc. 112, 881–892 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Delfinado, C.J.A., Edelsbrunner, H.: An Incremental Algorithm for Betti Numbers of Simplicial Complexes on the 3–Sphere. Comput. Aided Geom. Design 12, 771–784 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Computation of Cohomology Operations on Finite Simplicial Complexes. Homology, Homotopy and Applications 5(2), 83–93 (2003)Google Scholar
  5. 5.
    González–Díaz, R., Real, P.: Geometric Object and Cohomology Operations. In: Proceeding CASC 2002, pp. 121–130 (2002)Google Scholar
  6. 6.
    Gonzalez–Diaz, R., Real, P.: Towards Digital Cohomology. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 92–101. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    González–Díaz, R., Real, P.: On the Cohomology of 3D Digital Images. Discrete Applied Math. 147(2-3), 245–263 (2005)zbMATHCrossRefGoogle Scholar
  8. 8.
    González–Díaz, R., Medrano, B., Real, P., Sánchez–Peláez, J.: Topological control in digital images (in preparation)Google Scholar
  9. 9.
    Kong, T.Y., Roscoe, A.W., Rosenfeld, A.: Concepts of Digital Topology. Topology and its Applications 46, 219–262 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Lambe, L., Stasheff, J.: Applications of Perturbation Theory to Iterated Fibrations. Manuscripta Math. 58, 363–376 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    MacLane, S.: Homology. Classic in Math. Springer, Heidelberg (1995)Google Scholar
  12. 12.
    Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley Co, Reading (1984)zbMATHGoogle Scholar
  13. 13.
    Rosenfeld, A.: 3D Digital Topology. Inform. and Control 50, 119–127 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Rosenfeld, A., Kak, A.C.: Digital Picture Processing, vol. 2. Academic Press, London (1982)Google Scholar
  15. 15.
    Vöros, J.: A strategy for repetitive neighbor finding in images represented by quadtrees. Pattern Recognition Letters 18, 955–962 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Rocio Gonzalez–Diaz
    • 1
  • Belen Medrano
    • 1
  • Pedro Real
    • 1
  • Javier Sánchez–Peláez
    • 1
  1. 1.Depto. Matematica Aplicada I, E.T.S.I. InformaticaUniversidad de SevillaSevillaSpain

Personalised recommendations