Advertisement

Symbolic-Numerical Algorithm for Solving the Time-Dependent Schrödinger Equation by Split-Operator Method

  • Alexander Gusev
  • Vladimir Gerdt
  • Michail Kaschiev
  • Vitaly Rostovtsev
  • Valentin Samoylov
  • Tatyana Tupikova
  • Yoshio Uwano
  • Sergue Vinitsky
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3718)

Abstract

A new computational approach is proposed for the solution of the time-dependent Schrödinger equation (TDSE), in which a symbolic algorithm named GATEO and a numerical scheme based on the finite-element method (FEM) are effectively composed. The GATEO generates the multi-layer operator-difference scheme for TDSE and evaluates the effective Hamiltonian from the original time-dependent Hamiltonian by means of the Magnus expansion and the Pade-approximation. In order to solve the TDSE with the effective Hamiltonian thus obtained, the FEM is applied to a discretization of spatial domain which brings the difference scheme in operator form to the one in algebraic form. The efficiency and accuracy of GATEO and the numerical scheme associated with FEM is confirmed in the second-, fourth-, and sixth-order time-step computations for certain integrable atomic models with external fields.

Keywords

Gauge Transformation Algebraic Problem Gaussian Wave Packet Potential Function Versus Partial Splitting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Derbov, V.L., Melnikov, L.A., Umansky, I.M., Vinitsky, S.I.: Multipulse laser spectroscopy of p-bartHe + : Measurement and control of the metastable state populations. Phys. Rev. A 55, 3394–3400 (1997)CrossRefGoogle Scholar
  2. 2.
    Butkovskiy, A.G., Samoilenko, Y.I.: Control of Quantum-Mechanical Processes and Systems. Kluwer Academic Publishers, Dordrecht (1990)zbMATHGoogle Scholar
  3. 3.
    Bankov, N.G., Kaschiev, M.S., Vinitsky, S.I.: Adaptive method for solving the time-dependent Schrödinger equation. Comptes rendus de l’Academie bulgare des Scienses 55, 25–30 (2002)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Derbov, V.L., Kaschiev, M.S., Serov, V.V., Gusev, A.A., Vinitsky, S.I.: Adaptive numerical methods for time-dependent Schroedinger equation in atomic and laser physics. In: Proc. SPIE, vol. 5069, pp. 52–60 (2003)Google Scholar
  5. 5.
    Strang, G., Fix, G.: An Analisys of The Finite Element Method. Prentice Hall, Englewood Cliffs (1973)Google Scholar
  6. 6.
    Bathe, K.J.: Finite Element Procedures in Engineering Analysis. Prentice Hall, Englewood Cliffs (1982)Google Scholar
  7. 7.
    Abrashkevich, A.G., Abrashkevich, D.G., Kaschiev, M.S., Puzynin, I.V.: Finite-element solution of the coupled-channel Schrödinger equation using high-order accuracy approximations. Comput. Phys. Commun. 85, 40–65 (1995)zbMATHCrossRefGoogle Scholar
  8. 8.
    Abrashkevich, A.G., Kaschiev, M.S., Vinitsky, S.I.: A New Method for Soling an Eigenvalue Problem for a System of Three Coulomb Particles within the Hyperspherical Adiabatic Representation. J. Comp. Phys. 163, 328–348 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Puzynin, I.V., Selin, A.V., Vinitsky, S.I.: A high-order accuracy method for numerical solving of the time-dependent Schrödinger equation. Comput. Phys. Commun. 123, 1–6 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Magnus, W.: On the exponential solution of differential equations for a linear operator. Commun. Pure Appl. Math. 7, 649–673 (1954)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Samarskiy, A.A.: Theory of difference schemes. Nauka, Moscow (1977) (in Russian)Google Scholar
  12. 12.
    Crank, J., Nicholson, P.: A practical method for numerical evaluation of solutions of partial differential equation of the heat conduction type. Proc Cambridge Philos. Soc. 43, 50–67 (1947)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
  14. 14.
    Olver, P.J.: Application of Lie groups to differential equations. Springer, New York (1986)Google Scholar
  15. 15.
    Steinberg, S.: Lie Series, Lie Transformations and Their Applications. In: Sa’chez Mondrago’n, J., Wolf, K.B. (eds.) Lie Methods in Optics. Lecture Notes in Physics, pp. 45–103. Springer, New York (1985)Google Scholar
  16. 16.
    Jannussis, A.: Quantum equations of motion in the finite-difference approach. Lett. al Nuovo Cim. 40, 250–256 (1984)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Ukolov, Y.A., Chekanov, N.A., Gusev, A.A., Rostovtsev, V.A., Vinitsky, S.I., Uwano, Y.: LINA01: A REDUCE program for the normalization of polynomial Hamiltonians. Computer Physics Communications 166, 66–80 (2005)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Alexander Gusev
    • 1
  • Vladimir Gerdt
    • 1
  • Michail Kaschiev
    • 2
  • Vitaly Rostovtsev
    • 1
  • Valentin Samoylov
    • 1
  • Tatyana Tupikova
    • 1
  • Yoshio Uwano
    • 3
  • Sergue Vinitsky
    • 1
  1. 1.Joint Institute for Nuclear ResearchDubna, Moscow RegionRussia
  2. 2.Institute of Mathematics and InformaticsBASSofiaBulgaria
  3. 3.Future University-HakodateHakodateJapan

Personalised recommendations