Counting Techniques Specifying the Existence of Submatrices in Weighing Matrices

  • C. Kravvaritis
  • M. Mitrouli
  • Jennifer Seberry
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3718)


Two algorithmic techniques for specifying the existence of a k × k submatrix with elements 0,±1 in a skew and symmetric conference matrix of order n are described. This specification is achieved using an appropriate computer algebra system.

Keywords and Phrases

Gaussian elimination growth complete pivoting weighing matrices symbolic computation 

AMS Subject Classification

65F05 65G05 20B20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Day, J., Peterson, B.: Growth in Gaussian elimination. Amer. Math. Monthly 95, 489–513 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Geramita, A.V., Seberry, J.: Orthogonal Designs: Quadratic Forms and Hadamard Matrices. Marcel Dekker, New York-Basel (1979)Google Scholar
  3. 3.
    Koukouvinos, C., Mitrouli, M., Seberry, J.: Growth in Gaussian elimination for weighing matrices, W(n,n − 1). Linear Algebra Appl. 306, 189–202 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Kravvaritis, C., Mitrouli, M., Seberry, J.: On the growth problem for skew and symmetric conference matrices. Linear Algebra Appl. 403, 183–296 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Oxford University Press, London (1988)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • C. Kravvaritis
    • 1
  • M. Mitrouli
    • 1
  • Jennifer Seberry
    • 2
  1. 1.Department of MathematicsUniversity of AthensAthensGreece
  2. 2.Centre for Computer Security Research, SITACSUniversity of WollongongWollongong, NSWAustralia

Personalised recommendations