A Symbolic-Numeric Method for Solving Boundary Value Problems of Kirchhoff Rods

  • Liu Shu
  • Andreas Weber
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3718)


We study solution methods for boundary value problems associated with the static Kirchhoff rod equations. Using the well known Kirchhoff kinetic analogy between the equations describing the spinning top in a gravity field and spatial rods, the static Kirchhoff rod equations can be fully integrated. We first give an explicit form of a general solution of the static Kirchhoff equations in parametric form that is easy to use. Then by combining the explicit solution with a minimization scheme, we develop a unified method to match the parameters and integration constants needed by the explicit solutions and given boundary conditions. The method presented in the paper can be adapted to a variety of boundary conditions. We detail our method on two commonly used boundary conditions.


Euler Angle Minimization Scheme Local Reference Frame Elastic Strip Give Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chin, C.H.K., May, R.L., Connell, H.J.: A numerical model of a towed cable-body system. J. Aust. Math. Soc. 42(B), 362–384 (2000)MathSciNetGoogle Scholar
  2. 2.
    Swigon, D., Coleman, B.D., Tobias, I.: The elastic rod model for DNA and its application to the tertiary structure of DNA minicircles in mononucleosomes. Biop. J. 74, 2515–2530 (1998)CrossRefGoogle Scholar
  3. 3.
    Colemana, B.D., Olsonb, W.K., Swigonc, D.: Theory of sequence-dependent DNA elasticity. J. Chem. Phys. 118, 7127–7140 (2003)CrossRefGoogle Scholar
  4. 4.
    Moakher, M., Maddocks, J.H.: A double-strand elastic rod theory. In: Workshop on Atomistic to Continuum Models for Long Molecules and Thin Films (2001)Google Scholar
  5. 5.
    Coleman, B.D., Swigon, D.: Theory of self-contact in Kirchhoff rods with applications to supercoiling of knotted and unknotted DNA plasmids. Philosophical Transactions: Mathematical, Physical and Engineering Sciences 362, 1281–1299 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Goriely, A., Tabor, M.: Spontaneous helix-hand reversal and tendril perversion in climbing plants. Phys. Rev. Lett. 80, 1564–1567 (1998)CrossRefGoogle Scholar
  7. 7.
    Nizette, M., Goriely, A.: Towards a classification of Euler-Kirchhoff filaments. Journal of Mathematical Physics 40, 2830–2866 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Goriely, A., Nizette, M., Tabor, M.: On the dynamics of elastic strips. Journal of Nonlinear Science 11, 3–45 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    da Fonseca, A.F., de Aguiar, M.A.M.: Solving the boundary value problem for finite Kirchhoff rods. Physica D 181, 53–69 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Thomas, Y.H., Klapper, I., Helen, S.: Romoving the stiffness of curvature in computing 3-d filaments. J. Comp. Phys. 143, 628–664 (1998)zbMATHCrossRefGoogle Scholar
  11. 11.
    Rappaport, K.D.: S. Kovalevsky: A mathematical lesson. American Mathematical Monthly 88, 564–573 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Goriely, A., Nizettey, M.: Kovalevskaya rods and Kovalevskaya waves. Regu. Chao. Dyna. 5(1), 95–106 (2000)zbMATHCrossRefGoogle Scholar
  13. 13.
    Shi, Y., Hearst, J.E.: The Kirchhoff elastic rod, the nonlinear Schroedinger equation and DNA supercoiling. J. Chem. Phys. 101, 5186–5200 (1994)CrossRefGoogle Scholar
  14. 14.
    Pai, D.K.: STRANDS: Interactive simulation of thin solids using Cosserat models. Computer Graphics Forum 21, 347–352 (2002); Eurographics 2002CrossRefGoogle Scholar
  15. 15.
    Robbins, C.R.: Chemical and physical behavior of human hair. Springer, Heidelberg (2002)Google Scholar
  16. 16.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C++, 2nd edn. Cambridge University Press, Cambridge (2002)Google Scholar
  17. 17.
    Aluffi-Pentini, F., Parisi, V., Zirilli, F.: Sigma — a stochastic-integration global minimization algorithm. ACM Tran. Math. Soft. 14, 366–380 (1988)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Liu Shu
    • 1
  • Andreas Weber
    • 1
  1. 1.Institut für Informatik IIUniversität BonnBonnGermany

Personalised recommendations