Splicing Array Grammar Systems

  • K. G. Subramanian
  • A. Roslin Sagaya Mary
  • K. S. Dersanambika
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3722)


Splicing Array Grammar Systems (SAGS) generating pictures of rectangular arrays of symbols are introduced. The components consist of two-dimensional tabled matrix Grammars working in parallel and arrays generated in two different components of the SAGS are allowed to be “cut” and “pasted” according to array splicing domino rules. This model is motivated by the study of Dassow and Mitrana (1996) on string splicing grammar systems. Certain properties of SAGS are obtained.


Rectangular Array Proper Inclusion Individual Language Grammar System Matrix Grammar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Csuhaj-Varjú, E.: Grammar systems: 12 years, 12 problems (short version). In: Proceedings of the International Workshop on Grammar Systems 2000, Silesian University, Opava, pp. 77–92 (2000)Google Scholar
  2. 2.
    Csuhaj-Varjú, E., Dassow, J., Kelemen, J., Pǎun, G.: Grammar systems: A grammatical approach to distribution and cooperation. Gordon and Breach Science Publishers, Reading (1994)zbMATHGoogle Scholar
  3. 3.
    Dassow, J., Mitrana, V.: Splicing grammar systems. Computers and Artificial Intelligence 15, 109–122 (1996)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Dersanambika, K.S., Subramanian, K.G., Roslin Sagaya Mary, A.: Image Splicing grammar systems. In: Proc. Grammar systems Week 2004 (2004)Google Scholar
  5. 5.
    Freund, R.: Array Grammar Systems. Journal of Automata, Languages and Combinatorics 5(1), 13–29 (2000)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 215–267. Springer, Heidelberg (1997)Google Scholar
  7. 7.
    Head, T.: Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviours. Bull. Math. Biology 49, 737–759 (1987)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Head, T., Păun, G., Pixton, D.: Language theory and molecular genetics: Generative mechanisms suggested by DNA recombination. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 2, pp. 295–360. Springer, Heidelberg (1997)Google Scholar
  9. 9.
    Helen Chandra, P., Subramanian, K.G., Thomas, D.G.: Parallel Splicing on Images. Int. J. of pattern recognition and artificial intelligence (2004)Google Scholar
  10. 10.
    Rosenfeld, A., Siromoney, R.: Picture languages - a survey. Languages of design 1, 229–245 (1993)Google Scholar
  11. 11.
    Siromoney, G., Siromoney, R., Krithivasan, K.: Abstract families of matrices and picture languages. Computer Graphics and Image Processing 1, 234–307 (1972)MathSciNetGoogle Scholar
  12. 12.
    Siromoney, R., Subramanian, K.G., Rangarajan, K.: Parallel / Sequential Rectangular Arrays with Tables. Inter. J. Computer Math. 6, 143–158 (1977)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • K. G. Subramanian
    • 1
  • A. Roslin Sagaya Mary
    • 2
  • K. S. Dersanambika
    • 3
  1. 1.Department of MathematicsMadras Christian CollegeChennaiIndia
  2. 2.Rovira I Virgili UniversityTarragonaSpain
  3. 3.Department of Computer Science and EngineeringIndian Institute of TechnologyMadras, ChennaiIndia

Personalised recommendations