Increasing the Resource-Efficiency of the CSMA/CA Protocol in Directional Ad Hoc Networks

  • Matthias Grünewald
  • Feng Xu
  • Ulrich Rückert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3738)


The use of directional communication can result in higher performance of ad hoc networks in terms of throughput and delay. To exploit these advantages, we propose a system architecture that applies k air interfaces on each node. Each interface is equipped with a directional antenna. However, the energy consumption of such a system would be too high intuitionally. Power management is required that switches off the air interfaces if they are not needed. Hence, we design a detailed energy model for the system and a MAC protocol based on CSMA/CA with extensions for parallel directional communication, radiation power control and air interface power management. We verify and evaluate our implementation in a simulation environment. Our results show that the proposed system can achieve an energy efficiency comparable to a single antenna system while increasing the throughput and time efficiency of the resulting ad hoc network by a factor of 2-3.


Medium Access Control Data Packet Power Management Medium Access Control Protocol Control Packet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nasipuri, A., Ye, S., Hiromoto, R.E.: A MAC Protocol for Mobile Ad Hoc Networks Using Directional Antennas. In: Proc. of IEEE WCNC, Chicago, IL (2000)Google Scholar
  2. 2.
    Ko, Y.B., Shankarkumar, V., Vaidya, N.H.: Medium Access Control Protocols Using Directional Antennas in Ad Hoc Networks. In: Proc. of INFOCOM (2000)Google Scholar
  3. 3.
    Takai, M., Martin, J., Bagrodia, R., Ren, A.: Directional Virtual Carrier Sensing for Directional Antennas in Mobile Ad Hoc Networks. In: Proceedings of ACM MobiHoc (2002)Google Scholar
  4. 4.
    Korakis, T., Jakllari, G., Tassiulas, L.: A MAC protocol for full exploitation of Directional Antennas in Ad-hoc Wireless Networks. In: Proc. of MobiHoc, Annapolis, USA (2003)Google Scholar
  5. 5.
    Choudhury, R.R., Yang, X., Ramanathan, R., Vaidya, N.H.: Using Directional Antennas for Medium Access Control in Ad Hoc Networks. In: Proceedings of MobiCom, Atlanta, Georgia, USA (2002)Google Scholar
  6. 6.
    Lal, D., Toshniwal, R., Radhakrishnan, R., Agrawal, D.P., Caffery, J.: A Novel MAC Layer Protocol for Space Division Multiple Access in Wireless Ad Hoc Networks. In: Proc. of ICCCN, Miami (2002)Google Scholar
  7. 7.
    Ramanathan, R.: On the Performance of Ad Hoc Networks with Beamforming Antennas. In: Proceedings of MobiHOC, Long Beach, CA, USA (2001)Google Scholar
  8. 8.
    Nasipuri, A., Li, K., Sappidi, U.R.: Power Consumption and Throughput in Mobile Ad Hoc Networks using Directional Antennas. In: Proc. of ICCCN, Miami (2002)Google Scholar
  9. 9.
    Grünewald, M., Xu, F., Rückert, U.: Power Control in Directional Mobile Ad Hoc Networks. In: ITG Fachtagung ’Ambient Intelligence, Berlin, Germany (2004)Google Scholar
  10. 10.
    LAN/MAN Standards Committee of the IEEE Computer Society: ANSI/IEEE Std 802.11 – Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications (1999)Google Scholar
  11. 11.
    Tseng, Y.C., Hsu, C.S., Ten-Yueng, H.: Power-saving protocols for IEEE 802.11-based multi-hop ad hoc networks. Computer Networks 43, 317–337 (2003)zbMATHCrossRefGoogle Scholar
  12. 12.
    Grünewald, M., Niemann, J.C., Porrmann, M., Rückert, U.: A framework for design space exploration of resource efficient network processing on multiprocessor socs. In: Proceedings of the 3rd Workshop on Network Processors & Applications, Madrid, Spain, pp. 87–101 (2004)Google Scholar
  13. 13.
    Lehne, P.H., Pettersen, M.: An Overview of Smart Antenna Technology for Mobile Communications Systems. IEEE Communications Surveys 2, 2–13 (1999)Google Scholar
  14. 14.
    Feng, M., Shen, S.C., Caruth, D., Huang, J.J.: Device Technologies for RF Front-End Circuits in Next-Generation Wireless Communications. Proceedings of the IEEE 92, 354–375 (2004)CrossRefGoogle Scholar
  15. 15.
    Kraus, J.D.: Antennas. McGraw-Hill, New York (1950)Google Scholar
  16. 16.
    Feeney, L.M., Nilsson, M.: Investigating the energy consumption of a wireless network interface in an ad hoc networking environment. In: Proceedings of IEEE INFOCOM, Anchorage, Alaska (2001)Google Scholar
  17. 17.
    Philips: SA2411: +20dBm single chip linear amplifier for WLAN (2003)Google Scholar
  18. 18.
    Intersil Americas Inc.: Intersil PRISM 2.5 chip set: baseband processor ISL3873B, I/Q modulator/demodulator HFA3783, RF/IF converter ISL3685 (2000-2002)Google Scholar
  19. 19.
    Rührup, S., Schindelhauer, C., Volbert, K., Grünewald, M.: Performance of Distributed Algorithms for Topology Control in Wireless Networks. In: Proceedings of the International Parallel and Distributed Processing Symposium, Nice, France (2003)Google Scholar
  20. 20.
    Zheng, R., Kravets, R.: On-demand Power Management in Ad Hoc Networks. In: Proceedings of INFOCOM, San Francisco, California, USA (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Matthias Grünewald
    • 1
  • Feng Xu
    • 1
  • Ulrich Rückert
    • 1
  1. 1.Department of Electrical Engineering, System and Circuit TechnologyUniversity of Paderborn / Heinz Nixdorf InstitutePaderbornGermany

Personalised recommendations