Cross-Language Mining for Acronyms and Their Completions from the Web

  • Udo Hahn
  • Philipp Daumke
  • Stefan Schulz
  • Kornél Markó
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3735)


We propose a method that aligns biomedical acronyms and their long-form definitions across different languages. We use a freely available search and extraction tool by which abbreviations, together with their fully expanded forms, are massively mined from the Web. In a subsequent step, language-specific variants, synonyms, and translations of the extracted acronym definitions are normalized by referring to a language-independent, shared semantic interlingua.


Short Form Biomedical Text Long Form MEDLINE Abstract English Corpus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schulz, S., Hahn, U.: Morpheme-based, cross-lingual indexing for medical document retrieval. International Journal of Medical Informatics 59, 87–99 (2000)CrossRefGoogle Scholar
  2. 2.
    Porter, M.F.: An algorithm for suffix stripping. Program 14, 130–137 (1980)Google Scholar
  3. 3.
    MeSH: Medical Subject Headings. Bethesda, MD: National Library of Medicine (2004)Google Scholar
  4. 4.
    Markó, K., Hahn, U., Schulz, S., Daumke, P., Nohama, P.: Interlingual indexing across different languages. In: RIAO 2004 – Conference Proceedings: Coupling Approaches, Coupling Media and Coupling Languages for Information Retrieval, Avignon, France, April 26-28, pp. 82–99. Centre de Hautes Etudes Internationales d’Informatique Documentaire (CID), Paris (2004)Google Scholar
  5. 5.
    Schulz, S., Markó, K., Sbrissia, E., Nohama, P., Hahn, U.: Cognate mapping: A heuristic strategy for the semi-supervised acquisition of a Spanish lexicon from a Portuguese seed lexicon. In: COLING Geneva 2004 – Proceedings of the 20th International Conference on Computational Linguistics, Geneva, Switzerland, August 23-27, vol. 2, pp. 813–819. Association for Computational Linguistics (2004)Google Scholar
  6. 6.
    Markó, K., Schulz, S., Medelyan, A., Hahn, U.: Bootstrapping dictionaries for cross-language information retrieval. In: SIGIR 2005 – Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Salvador, Brazil, August 15-19. ACM, New York (2005)Google Scholar
  7. 7.
    Markó, K., Daumke, P., Schulz, S., Hahn, U.: Cross-language MeSH indexing using morpho-semantic normalization. In: Musen, M.A. (ed.) AMIA 2003 – Proceedings of the 2003 Annual Symposium of the American Medical Informatics Association. Biomedical and Health Informatics: From Foundations to Applications, Washington, D.C., November 8-12, pp. 425–429. Hanley & Belfus, Philadelphia (2003)Google Scholar
  8. 8.
    Schwartz, A.S., Hearst, M.A.: A simple algorithm for identifying abbreviation definitions in biomedical text. In: Altman, R.B., Dunker, A.K., Hunter, L., Jung, T.A., Klein, T.E. (eds.) PSB 2003 – Proceedings of the Pacific Symposium on Biocomputing 2003, Kauai, Hawaii, USA, January 3-7, pp. 451–462. World Scientific Publishing, Singapore (2003)Google Scholar
  9. 9.
    Pustejovsky, J., Castaño, J., Cochran, B., Kotecki, M., Morrell, M.: Automatic extraction of acronym-meaning pairs from Medline databases. In: Patel, V.L., Rogers, R., Haux, R. (eds.) MEDINFO 2001 – Proceedings of the 10th World Congress on Medical Informatics, London, U. K., September 2001. Studies in Health Technology and Informatics, vol. 1(84), pp. 371–375. IOS Press, Amsterdam (2001)Google Scholar
  10. 10.
    Yu, H., Hripcsak, G., Friedman, C.: Mapping abbreviations to full forms in biomedical articles. Journal of the American Medical Informatics Association 9, 262–272 (2002)CrossRefGoogle Scholar
  11. 11.
    Chang, J.T., Schütze, H., Altman, R.B.: Creating an online dictionary of abbreviations from Medline. Journal of the American Medical Informatics Association 9, 612–620 (2002)CrossRefGoogle Scholar
  12. 12.
    Wren, J.D., Garner, H.R.: Heuristics for identification of acronym-definition patterns within text: Towards an automated construction of comprehensive acronym-definition dictionaries. Methods of Information in Medicine 41, 426–434 (2002)Google Scholar
  13. 13.
    Adar, E.: SARAD: A simple and robust abbreviation dictionary. Bioinformatics 20, 527–533 (2004)CrossRefGoogle Scholar
  14. 14.
    Dagan, I., Itai, A., Schwall, U.: Two languages are more informative than one. In: Proceedings of the 29th Annual Meeting of the Association for Computational Linguistics, Berkeley, CA, USA, Association for Computational Linguistics, June 18-21, pp. 130–137 (1991)Google Scholar
  15. 15.
    Rimer, M., O’Connell, M.: BIOABACUS: A database of abbreviations and acronyms in biotechnology and computer science. Bioinformatics 14, 888–889 (1998)CrossRefGoogle Scholar
  16. 16.
    Taghva, K., Gilbreth, J.: Recognizing acronyms and their definitions. International Journal on Document Analysis and Recognition 1, 191–198 (1999)CrossRefGoogle Scholar
  17. 17.
    Nenadić, G., Spasic, I., Ananiadou, S.: Automatic acronym acquisition and term variation management within domain-specific texts. In: Rodriguez, M.G., Paz Suarez Araujo, C. (eds.) LREC 2002 – Proceedings of the 3rd International Conference on Language Resources and Evaluation, Las Palmas de Gran Canaria, Spain, May 29-31, vol. 6, pp. 2155–2162. European Language Resources Association (ELRA), Paris (2002)Google Scholar
  18. 18.
    Wren, J.D., Chang, J.T., Pustejovsky, J., Adar, E., Garner, H.R., Altman, R.B.: Biomedical term mapping databases. Nucleic Acids Research 33, D289–D293 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Udo Hahn
    • 1
  • Philipp Daumke
    • 2
  • Stefan Schulz
    • 2
  • Kornél Markó
    • 2
  1. 1.Jena University Language and Information Engineerings (JULIE) LabGermany
  2. 2.Department of Medical InformaticsFreiburg University HospitalGermany

Personalised recommendations