Advertisement

A Data Analysis Approach for Evaluating the Behavior of Interestingness Measures

  • Xuan-Hiep Huynh
  • Fabrice Guillet
  • Henri Briand
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3735)

Abstract

In recent years, the problem of finding the different aspects existing in a dataset has attracted many authors in the domain of knowledge quality in KDD. The discovery of knowledge in the form of association rules has become an important research. One of the most difficult issues is that an enormous number of association rules are discovered, so it is not easy to choose the best association rules or knowledge for a given dataset. Some methods are proposed for choosing the best rules with an interestingness measure or matching properties of interestingness measure for a given set of interestingness measures. In this paper, we propose a new approach to discover the clusters of interestingness measures existing in a dataset. Our approach is based on the evaluation of the distance computed between interestingness measures. We use two techniques: agglomerative hierarchical clustering (AHC) and partitioning around medoids (PAM) to help the user graphically evaluates the behavior of interestingness measures.

Keywords

Association Rule Mining Association Rule Agglomerative Hierarchical Cluster Interestingness Measure Data Analysis Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. of the 20th VLDB, Santiago, Chile, pp. 487–499 (1994)Google Scholar
  2. 2.
    Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proc. of the ACM-SIGMOD Int. Conf. on Management of Data, Washington DC, USA, pp. 207–216 (1993)Google Scholar
  3. 3.
    Bayardo Jr., R.J., Agrawal, R.: Mining the most interestingness rules. In: KDD 1999, San Diego, CA, USA, pp. 145–154 (1999)Google Scholar
  4. 4.
    Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases, University of California, Irvine, Dept. of Information and Computer Sciences (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html
  5. 5.
    Freitas, A.A.: On rule interestingness measures. Knowledge-Based Systems 12(5-6), 309–315 (1999)CrossRefGoogle Scholar
  6. 6.
    Gras, R., Couturier, R., Blanchard, J., Briand, H., Kuntz, P., Peter, P.: Quelques critères pour une mesure de qualité de règles d’association. Mesures de Qualité pour la Fouille de Données, RNTI-E-1. Cépaduès Editions, 3–31 (2004)Google Scholar
  7. 7.
    Gras, R.: L’implication statistique - Nouvelle méthode exploratoire de données. La pensée sauvage édition (1996)Google Scholar
  8. 8.
    Hilderman, R.J., Hamilton, H.J.: Knowledge Discovery and Measures of Interestingness. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  9. 9.
    Huynh, X.H., Guillet, F., Briand, H.: ARQAT: an exploratory analysis tool for interestingness measures. In: ASMDA 2005, pp. 334–344 (2005)Google Scholar
  10. 10.
    Huynh, X.H., Guillet, F., Briand, H.: Clustering interestingness measures with positive correlation. In: ACM ICEIS 2005, pp. 248–253 (2005)Google Scholar
  11. 11.
    Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York (1990)Google Scholar
  12. 12.
    Liu, B., Hsu, W., Mun, L., Lee, H.: Finding interestingness patterns using user expectations. IEEE Trans. on Knowledge and Data Mining (11), 817–832 (1999)Google Scholar
  13. 13.
    Padmanabhan, B., Tuzhilin, A.: A belief-driven method for discovering unexpected patterns. In: KDD 1998, pp. 94–100 (1998)Google Scholar
  14. 14.
    Piatetsky-Shapiro, G.: Discovery, analysis and presentation of strong rules. In: Piatetsky-Shapiro, G., Frawley, W. (eds.) Knowledge Discovery in Databases, pp. 229–248. MIT Press, Cambridge (1991)Google Scholar
  15. 15.
    Saporta, G.: Probabilité, analyse des données et statistique. Edition Technip (1990)Google Scholar
  16. 16.
    Tan, P.N., Kumar, V., Srivastava, J.: Selecting the right objective measure for association analysis. Information Systems 29(4), 293–313 (2004)CrossRefGoogle Scholar
  17. 17.
    Vaillant, B., Lenca, P., Lallich, S.: A clustering of interestingness measures. In: DS 2004, pp. 290–297 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Xuan-Hiep Huynh
    • 1
  • Fabrice Guillet
    • 1
  • Henri Briand
    • 1
  1. 1.LINA CNRS 2729Polytechnic School of Nantes UniversityNantesFrance

Personalised recommendations