Advertisement

Revised Fischlin’s (Blind) Signature Schemes

  • Kewei Lv
Conference paper
  • 694 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3802)

Abstract

The representation problem based on factoring gives rise to alternative solutions to a lot of cryptographic protocols in the literature. Fischlin applies the problem to identification and (blind) signatures. Here we show some flaw of Fischlin’s schemes and present the revision.

Keywords

Signature Scheme Random Oracle Representation Problem Blind Signature Cryptographic Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellare, M., Fischlin, M., Glodwasser, S., Micali, S.: Indentification protocols secure against reset attacks. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 495–511. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Rogaway, P.: Random oracle are practical: a paradigm for designing efficient protocols. In: First ACM conference on Computer and Communication Security, pp. 62–73. ACM Press, New York (1993)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Di Crescenzo, G., Katz, J., Ostrovsky, R., Smith, A.: Efficient and non-interactive non-malleable commitment. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 40–59. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Dolev, D., Dwork, C., Noar, M.: Non-malleable cryptography. SIAM J. on Computing 30(2), 391–437 (2000)zbMATHCrossRefGoogle Scholar
  6. 6.
    Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature schemes. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
  7. 7.
    Fischlin, M., Fischlin, R.: Efficient non-malleable commitment schemes. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 414–432. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Fischlin, M., Fischlin, R.: The representation problem based on factoring. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 96–113. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Okamoto, T.: Provable secure and practical identification schemes and corresponding signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 31–53. Springer, Heidelberg (1993)Google Scholar
  10. 10.
    Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. of Cryptology 13(3), 361–396 (2000)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Kewei Lv
    • 1
  1. 1.State Key Laboratory of Information SecurityGraduate School of Chinese, Academy of SciencesBeijingChina

Personalised recommendations