Advertisement

Efficient Verifiable Ring Encryption for Ad Hoc Groups

  • Joseph K. Liu
  • Patrick P. Tsang
  • Duncan S. Wong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3813)

Abstract

We propose an efficient Verifiable Ring Encryption (VRE) for ad hoc groups. VRE is a kind of verifiable encryption [16,1,4,2,8] in which it can be publicly verified that there exists at least one user, out of a designated group of n users, who can decrypt the encrypted message, while the semantic security of the message and the anonymity of the actual decryptor can be maintained. This concept was first proposed in [10] in the name of Custodian-Hiding Verifiable Encryption. However, their construction requires the inefficient cut-and-choose methodology which is impractical when implemented. We are the first to propose an efficient VRE scheme that does not require the cut-and-choose methodology.

In addition, while [10] requires interaction with the encryptor when a verifier verifies a ciphertext, our scheme is non-interactive in the following sense: (1) an encryptor does not need to communicate with the users in order to generate a ciphertext together with its validity proof; and (2) anyone (who has the public keys of all users) can verify the ciphertext, without the help of the encryptor or any users. This non-interactiveness makes our scheme particularly suitable for ad hoc networks in which nodes come and go frequently as ciphertexts can be still generated and/or verified even if other parties are not online in the course. Our scheme is also proven secure in the random oracle model.

Keywords

Encryption Scheme Secret Message Random Oracle Security Parameter Secret Sharing Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 591–606. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Bao, F.: An efficient verifiable encryption scheme for encryption of discrete logarithms. In: Schneier, B., Quisquater, J.-J. (eds.) CARDIS 1998. LNCS, vol. 1820, pp. 213–220. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Proc.1st ACM Conference on Computer and Communications Security, pp. 62–73. ACM Press, New York (1993)CrossRefGoogle Scholar
  4. 4.
    Camenisch, J., Damgård, I.: Verifiable encryption, group encryption, and their applications to separable group signatures and signature sharing schemes. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 331–345. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocations. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Camenisch, J., Michels, M.: Separability and efficiency for generic group signature schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 413–430. Springer, Heidelberg (1999)Google Scholar
  7. 7.
    Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete logarithms (2002), http://eprint.iacr.org/2002/161/
  8. 8.
    Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Kilian, J., Petrank, E.: Identity escrow. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 169–185. Springer, Heidelberg (1998)Google Scholar
  10. 10.
    Liu, J., Wei, V., Wong, D.: Custodian-hiding verifiable encryption. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 54–67. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Liu, J., Wei, V., Wong, D.: Linkable spontaneous anonymous group signature for ad hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Ohta, K., Okamoto, T.: On concrete security treatment of signatures derived from identification. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 354–369. Springer, Heidelberg (1998)Google Scholar
  13. 13.
    Paillier, P.: Public-key cryptosystems based on composite residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–239. Springer, Heidelberg (1999)Google Scholar
  14. 14.
    Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg (1996)Google Scholar
  15. 15.
    Rivest, R., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Stadler, M.: Publicly verifiable secret sharing. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 191–199. Springer, Heidelberg (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Joseph K. Liu
    • 1
  • Patrick P. Tsang
    • 1
  • Duncan S. Wong
    • 2
  1. 1.Department of Information EngineeringThe Chinese University of Hong KongShatin, Hong Kong
  2. 2.Department of Computer ScienceCity University of Hong KongKowloon, Hong Kong

Personalised recommendations