Representing Dispositions and Emotions in Simulated Combat

  • H. Van Dyke Parunak
  • Robert Bisson
  • Sven Brueckner
  • Robert Matthews
  • John Sauter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3890)


Emotion is an essential element of human behavior. Particularly in stressful situations such as combat, it is at least as important as rational analysis in determining a participant’s behavior. Yet combat models routinely ignore this factor. DETT (Disposition, Emotion, Trigger, Tendency) is an environmentally mediated model of emotion that captures the essential features of the widely-used OCC (Ortony, Clore, Collins) model in a computationally tractable framework that can support large numbers of combatants. We motivate and describe this architecture, and report preliminary experiments that use it in simulating combat scenarios.


Perception Belief Green Agent Emotion Appraisal Digital Pheromone Combat Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonder, S., Farrell, L.W.: Development of Models for Defense Systems Planning. SRL 2147 TR70-2, Systems Research Laboratory, University of Michigan, Ann Arbor, MI (1970)Google Scholar
  2. 2.
    Brave, S., Nass, C.: Emotion in Human-Computer Interaction. In: Jacko, J.A., Sears, A. (eds.) The human-computer interaction handbook: fundamentals, evolving technologies and emerging applications, pp. 81–96. Lawrence Erlbaum Associates, Inc., Mahwah (2003)Google Scholar
  3. 3.
    Brueckner, S.: Return from the Ant: Synthetic Ecosystems for Manufacturing Control. Dr.rer.nat. Thesis at Humboldt University Berlin, Department of Computer Science (2000),
  4. 4.
    Darwin, C.: The expression of the emotions in man and animals. John Murray, London (1872)CrossRefGoogle Scholar
  5. 5.
    Gratch, J., Marsella, S.: A Domain-independent Framework for Modeling Emotion. Journal of Cognitive Systems Research 5(4), 269–306 (2004)CrossRefGoogle Scholar
  6. 6.
    Ilachinski, A.: Artificial War: Multiagent-based Simulation of Combat. World Scientific, Singapore (2004)CrossRefGoogle Scholar
  7. 7.
    Kinny, D., Georgeff, M., Rao, A.: A Methodology and Modelling Technique for Systems of BDI Agents. In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp. 56–71. Springer, Heidelberg (1996), CrossRefGoogle Scholar
  8. 8.
    Kott, A.: Real-Time Adversarial Intelligence & Decision Making, RAID (2004),
  9. 9.
    Lanchester, F.W.: Aircraft in Warfare: The Dawn of the Fourth Arm. Constable and Co., Ltd., London (1916)zbMATHGoogle Scholar
  10. 10.
    Lauren, M.K., Stephen, R.T.: Map-Aware Non-uniform Automata (MANA)—A New Zealand Approach to Scenario Modelling. Journal of Battlefield Technology 5(1), 27 (2002), Google Scholar
  11. 11.
    Marinier, R., Laird, J.: Toward a Comprehensive Computational Model of Emotions and Feelings. In: Proceedings of Sixth International Conference on Cognitive Modeling, Pittsburgh, PA, pp. 172–177. Lawrence Erlbaum, Mahwah (2004)Google Scholar
  12. 12.
    Murphy, R.R., Lisetti, C.L., Tardif, R., Irish, L., Gage, A.: Emotion-Based Control of Cooperating Heterogeneous Mobile Robots. IEEE Transactions on Robotics and Automation 18(5), 744–757 (2002)CrossRefGoogle Scholar
  13. 13.
    Ortony, A., Clore, G.L., Collins, A.: The cognitive structure of emotions. Cambridge University Press, Cambridge (1988)CrossRefGoogle Scholar
  14. 14.
    Parunak, H.V.D., Brueckner, S.: Modeling Uncertain Domains with Polyagents. In: Proceedings of International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2006), Hakodate, Japan (2006),
  15. 15.
    Parunak, H.V.D., Brueckner, S., Matthews, R., Sauter, J., Brophy, S.: Characterizing and Predicting Agents via Multi-Agent Evolution. Altarum Institute, Ann Arbor, MI (2005),
  16. 16.
    Parunak, H.V.D., Brueckner, S., Savit, R.: Universality in Multi-Agent Systems. In: Proceedings of Third International Joint Conference on Autonomous Agents and Multi- Agent Systems (AAMAS 2004), New York, pp. 930–937. IEEE, Los Alamitos (2004), Google Scholar
  17. 17.
    Parunak, H.V.D., Brueckner, S.A., Matthews, R., Sauter, J.: Pheromone Learning for Self-Organizing Agents. IEEE SMC 35(3), 316–326 (2005), Google Scholar
  18. 18.
    Picard, R.W.: Affective Computing. MIT Press, Cambridge (2000)Google Scholar
  19. 19.
    Rao, A.S., Georgeff, M.P.: Modeling Rational Agents within a BDI Architecture. In: Proceedings of International Conference on Principles of Knowledge Representation and Reasoning (KR 1991), pp. 473–484. Morgan Kaufman, San Francisco (1991)Google Scholar
  20. 20.
    von Clausewitz, C.: Vom Kriege. Dümmlers Verlag, Berlin (1832)Google Scholar
  21. 21.
    von Neumann, J.: Zur Theorie der Gesellschaftsspiele. Mathematische Annalen 100, 295–320 (1928)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • H. Van Dyke Parunak
    • 1
  • Robert Bisson
    • 1
  • Sven Brueckner
    • 1
  • Robert Matthews
    • 1
  • John Sauter
    • 1
  1. 1.Altarum InstituteAnn ArborUSA

Personalised recommendations