Advertisement

An Application Intersection Marketing Ontology

  • Xuan Zhou
  • James Geller
  • Yehoshua Perl
  • Michael Halper
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3895)

Abstract

We consider the design of an ontology for marketing knowledge. Such an ontology contains two hierarchies, a customer hierarchy and a product hierarchy. The product hierarchy representation is straightforward, as in general each level consists of products that are more specific than the products on the previous level. However, the customer hierarchy is problematic, since it involves many independent dimensions such as age, gender, income, etc. A straightforward ordering of the different dimensions to create a tree hierarchy is ineffective. We present an innovative design for the customer hierarchy based on introducing intersections of options for various dimensions on demand. We call such an ontology an intersection ontology. The advantages of such a design are explored and evaluated using our Web marketing project.

Keywords

Married Woman Semantic Network Visual Complexity Customer Class Intersection Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Quillian, M.R.: Semantic memory. In: Minsky, M.L. (ed.) Semantic Information Processing, pp. 227–270. The MIT Press, Cambridge (1968)Google Scholar
  2. 2.
    Bouquet, A., Dona, L.S., Zanobini, S.: Contextualized local ontology specification via ctxml. In: MeaN-02 AAAI Workshop on Meaning Negotiation, Edmonton, Alberta, Canada (2002)Google Scholar
  3. 3.
    Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge Acquisition 5, 199–220 (1993)CrossRefGoogle Scholar
  4. 4.
    Geller, J., Perl, Y., Lee, J.: Guest editors’ introduction to the special issue on ontologies: Ontology challenges: A thumbnail historical perspective. Knowledge and Information Systems 6, 375–379 (2004)CrossRefGoogle Scholar
  5. 5.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284, 34–43 (2001)CrossRefGoogle Scholar
  6. 6.
    Guarino, N., Poli, R.: Special issue on formal ontology in conceptual analysis and knowledge representation. Journal of Human-Computer Studies 43 (1995)Google Scholar
  7. 7.
    Hendler, J.: Special issue on agents and the semantic web. IEEE Intelligent Systems 16 (2001)Google Scholar
  8. 8.
    Gruninger, M., Lee, J.: Special issue on ontology applications and design. Communications of the ACM 45 (2002)Google Scholar
  9. 9.
    McGuinness, D.L.: Ontologies come of age. In: Fensel, D., Hendler, J., Lieberman, H., Wahlster, W. (eds.) Spinning the Semantic Web: Bringing the World Wide Web to Its Full Potential, MIT Press, Washington (2002)Google Scholar
  10. 10.
    Noy, N.F., Hafner, C.D.: The state of the art in ontology design. AI Magazine, 53–74 (Fall 1997) Google Scholar
  11. 11.
    Geller, J., Perl, Y., Lee, J.: Special issue on ontologies: Ontology challenges. Knowledge and Information Systems 6 (2004)Google Scholar
  12. 12.
    Geller, J., Scherl, R., Perl, Y.: Mining the web for target marketing information. In: Proceedings of CollECTer, Toulouse, France, April 20 (2002)Google Scholar
  13. 13.
    Witten, I.H., Frank, E.: DataMining. Morgan Kaufmann Publishers, San Francisco (2000)Google Scholar
  14. 14.
    Sowa, J.F.: Knowledge Representation. Brooks/Cole, Pacific Grove (2000)Google Scholar
  15. 15.
    Sowa, J.: Distinctions, combinations and constraints. In: Proceedings of the Workshop on Basic Ontological Issues in Knowledge Sharing, Montreal, Canada (1995)Google Scholar
  16. 16.
    Wille, R.: Restructuring lattice theory: An approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered sets, pp. 445–470. Reidel, Dordrecht (1982)Google Scholar
  17. 17.
    Wille, R.: Concept lattices and conceptual knowledge systems. Computers and Mathematics with Application 23, 493–515 (1992)zbMATHCrossRefGoogle Scholar
  18. 18.
    MediaMark: MediaMark Web site (2001), http://www.mediamark.com
  19. 19.
    Gu, H., Halper, M., Geller, J., Perl, Y.: Benefits of an OODB representation for controlled medical terminologies. JAMIA 6, 283–303 (1999)Google Scholar
  20. 20.
    Gu, H., Perl, Y., Geller, J., Halper, M., Liu, L., Cimino, J.J.: Representing the UMLS as an OODB: Modeling issues and advantages. JAMIA 7, 66–80 (2000)Google Scholar
  21. 21.
    Liu, L., Halper, M., Geller, J., Perl, Y.: Controlled vocabularies in OODBs: Modeling issues and implementation. Distributed and Parallel Databases 7, 37–65 (1999)CrossRefGoogle Scholar
  22. 22.
    Liu, L., Halper, M., Geller, J., Perl, Y.: Using OODB modeling to partition a vocabulary into structurally and semantically uniform concept groups. IEEE Transactions on Knowledge and Data Engineering 14, 850–866 (2002)CrossRefGoogle Scholar
  23. 23.
    Geller, J., Gu, H., Perl, Y., Halper, M.: Semantic refinement and error correction in large terminological knowledge bases. Data and Knowledge Engineering 45, 1–32 (2003)CrossRefGoogle Scholar
  24. 24.
    Gu, H., Perl, Y., Elhanan, G., Min, H., Zhang, L., Peng, Y.: Auditing concept categorizations in the UMLS. Artificial Intelligence in Medicine 31, 29–44 (2004)CrossRefGoogle Scholar
  25. 25.
    Gu, H., Perl, Y., Halper, M., Geller, J., Kuo, F., Cimino, J.J.: Partitioning an object-oriented terminology schema. Methods in Medical Informatics, 204–212 (2001) Google Scholar
  26. 26.
    Perl, Y., Geller, J., Gu, H.: Identifying a forest hierarchy in an OODB specialization hierarchy satisfying disciplined modeling. In: Proc. CoopIS 1996, Brussels, Belgium, pp. 182–195 (1996)Google Scholar
  27. 27.
    Gu, H., Perl, Y., Halper, M., Geller, J., Neuhold, E.J.: Contextual partitioning for comprehension of OODB schemas. Knowledge and Information Systems (KAIS) 6, 315–344 (2004)CrossRefGoogle Scholar
  28. 28.
    Campbell, A., Shapiro, S.: Ontologic mediation: An overview. In: Proceedings of the Workshop on Basic Ontological Issues in Knowledge Sharing, Montreal, Canada, pp. 16–25 (1995)Google Scholar
  29. 29.
    Gómez-Pérez, A., Benjamins, V.R.: Overview of knowledge sharing and reuse components: Ontologies and problem-solving methods. In: Benjamins, V., Chandrasekaran, B., Gómez-Pérez, A., Guarino, N., Uschold, M. (eds.) Proceedings of the IJCAI-99 workshop on Ontologies and Problem-Solving Methods (KRR5), Stockholm, Sweden, pp. 1.1–1.15 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Xuan Zhou
    • 1
  • James Geller
    • 1
  • Yehoshua Perl
    • 1
  • Michael Halper
    • 2
  1. 1.CS DepartmentNew Jersey Institute of TechnologyNewarkUSA
  2. 2.Mathematics & Computer Science DepartmentKean UniversityUnionUSA

Personalised recommendations