Advertisement

Empirical Molecular Dynamics: Possibilities, Requirements, and Limitations

  • Kurt Scheerschmidt
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 104)

Abstract

Classical molecular dynamics enables atomistic structure simulations of nanoscopic systems to be made. The method is extremely powerful in solving the Newtonian equations of motion to predict static and dynamic properties of extended particle systems. However, to yield macroscopically relevant and predictive results, suitable interatomic potentials are necessary, developed on ab-initio-based approximations. The fundamental requirements for performing classical molecular dynamics are presented as well as the relation to statistical methods and particle mechanics, suitable integration and embedding techniques, and the analysis of the trajectories. The applicability of the technique is demonstrated by calculating quantum-dot relaxations and interaction processes at wafer-bonded interfaces.

Keywords

71.10.-w 71.17.-m 71.23.-k 71.55.-i 63.20Mt 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Kohn: Rev. Mod. Phys. 71, 1253 (1999) CrossRefGoogle Scholar
  2. M. W. Finnis: Interatomic forces in condensed matter, in Oxford Series on Materials Modelling (Oxford University Press, Oxford 2003) Google Scholar
  3. K. Ohno, K. Esforjani, Y. Kawazoe: Computational Materials Science: From ab initio to Monte Carlo Methods (Springer, Berlin, Heidelberg 1999) Google Scholar
  4. M. C. Payne, M. P. Teter, D. C. Allen, et al: Rev. Mod. Phys. 64, 1045 (1992) CrossRefGoogle Scholar
  5. G. Galli, A. Pasquarello: First-principles molecular dynamics, in M. P. Allen, D. J. Tildesley (Eds.): Computer Simulation in Chemical Physics (Academic Publisher, Dordrecht, Netherlands 1993) pp. 261–313 Google Scholar
  6. T. Frauenheim, G. Seifert, M. Elstner, et al: phys. stat. sol. B 217, 41 (2000) CrossRefGoogle Scholar
  7. D. R. Bowler, T. Miyazaki, M. J. Gillan: J. Phys.: Condens. Matter 14, 2781 (2002) CrossRefGoogle Scholar
  8. J. M. Soler, E. Artacho, J. D. Gale, et al: J. Phys.: Condens. Matter 14, 2745 (2002) CrossRefGoogle Scholar
  9. M. D. Segall, P. J. D. Lindan, M. J. Probert, et al: J. Phys.: Condens. Matter 14, 2717 (2002) CrossRefGoogle Scholar
  10. R. Car, M. Parinello: Phys. Rev. Lett. 55, 2471 (1985) CrossRefGoogle Scholar
  11. G. C. Csany, T. Albaret, M. C. Payne, A. DeVita: Phys. Rev. Lett. 93, 175503 (2004) CrossRefGoogle Scholar
  12. P. Ruggerone, A. Kley, M. Scheffler: Bridging the length and time scales: from ab initio electronic structure calculations to macroscopic proportions, Comm. Condens. Matter Phys. 18, 261 (1998) Google Scholar
  13. R. M. Nieminen: J. Phys.: Condens. Matter 14, 2859 (2002) CrossRefGoogle Scholar
  14. R. E. Rudd, J. Q. Broughton: phys. stat. sol. B 217, 251 (2000) CrossRefGoogle Scholar
  15. B. I. Lundquist, A. Bogicevic, S. Dudy, et al: Comput. Mater. Sci. 24, 1 (2002) CrossRefGoogle Scholar
  16. K. Scheerschmidt, D. Conrad, A. Belov: Comput. Mater. Sci. 24, 33 (2002) CrossRefGoogle Scholar
  17. J. M. Haile: Molecular Dynamics Simulation: Elementary Methods (Wiley, New York 1992) Google Scholar
  18. D. C. Rapaport: The Art of Molecular Dynamics Simulation (Cambridge Univ. Press, Cambridge 1998) Google Scholar
  19. R. Haberlandt: Molekulardynamik: Grundlagen und Anwendungen (Vieweg, Braunschweig, Wiesbaden 1995) Google Scholar
  20. W. G. Hoover: Molecular dynamics, in Lecture Notes in Physics, vol. 258 (Springer, Berlin, Heidelberg 1986) Google Scholar
  21. I. G. Kaplan: Theory of molecular interactions, in Studies in Physical and Theoretical Chemistry, vol. 42 (Elsevier Science Ltd., Amsterdam 1986) Google Scholar
  22. M. Sprik: Introduction to molecular dynamics methods, in K. Binder, G. Cicotti (Eds.): Monte Carlo and Molecular Dynamics of Condensed Matter Systems, vol. 49, Conf. Proc. Vol. (SIF, Bologna 1996) Chap. 2, pp. 47–87 Google Scholar
  23. D. W. Heermann: Computer Simulation Methods in Theoretical Physics (Springer, Berlin, Heidelberg 1990) Google Scholar
  24. J. M. Ziman: Principles of the Theory of Solids (Cambridge Univ. Press, Cambridge 1972) Google Scholar
  25. S. W. deLeeuw, J. W. Perram, E. R. Smith: Proc. Roy. Soc. London A 373, 27 (1980) CrossRefGoogle Scholar
  26. D. Wolf, P. Keblinski, S. R. Phillpot, J. Eggebrecht: J. Chem. Phys. 110, 8254 (1999) CrossRefGoogle Scholar
  27. A. F. Voter: Phys. Rev. B 57, 13985 (1998) CrossRefGoogle Scholar
  28. A. F. Voter, F. Montalenti, T. C. Germann: Ann. Rev. Mater. Res. 32, 321 (2002) CrossRefGoogle Scholar
  29. W. Rullmann, H. Gunsteren, H. Berendsen: Mol. Phys. 44, 69 (1981) CrossRefGoogle Scholar
  30. S. Nosé: Mol. Phys. 52, 255 (1984) CrossRefGoogle Scholar
  31. S. Nosé: J. Chem. Phys. 81, 511 (1984) CrossRefGoogle Scholar
  32. W. G. Hoover: Phys. Rev. A 31, 695 (1985) CrossRefGoogle Scholar
  33. H. C. Andersen: J. Chem. Phys. 72, 2384 (1980) CrossRefGoogle Scholar
  34. M. Parinello, A. Rahman: J. Appl. Phys. 52, 7182 (1981) CrossRefGoogle Scholar
  35. L. Yang, D. J. Srolowitz, A. F. Yee: J. Chem. Phys. 107, 4396 (1997) CrossRefGoogle Scholar
  36. G. P. Morriss, D. J. Evans: Phys. Rev. A 35, 792 (1987) CrossRefGoogle Scholar
  37. D. J. Evans, G. P. Morriss: Statistical Mechanics of Nonequilibrium Liquids (Academic, London, New York 1990) Google Scholar
  38. J. D. Gale: Special Issue: Interatomic Potentials, Philos. Mag. B 73, 3 (1996) Google Scholar
  39. A. Horsfield: Special Issue: Interatomic Potentials, Philos. Mag. B 73, 85 (1996) Google Scholar
  40. S. C. Price: Special Issue: Interatomic Potentials, Philos. Mag. B 73, 95 (1996) Google Scholar
  41. J. N. Murrell: Special Issue: Interatomic Potentials, Philos. Mag. B 73, 163 (1996) Google Scholar
  42. D. L. Cooper, T. Thorsteinsson: Special Issue: Interatomic Potentials, Philos. Mag. B 73, 175 (1996) Google Scholar
  43. M. C. Payne, I. J. Robertson, D. Thomssen, V. Heine: Special Issue: Interatomic Potentials, Philos. Mag. B 73, 191 (1996) Google Scholar
  44. Guest Editor A. F. Voter, V. Vitek: MRS-Bull. 21, 20 (1992) Google Scholar
  45. S. M. Foiles: MRS-Bull. 21, 24 (1992) Google Scholar
  46. M. Stoneham, J. Hardy, T. Harker: MRS-Bull. 21, 29 (1992) Google Scholar
  47. D. W. Brenner: MRS-Bull. 21, 36 (1992) Google Scholar
  48. A. P. Sutton, P. D. Goodwin, A. P. Horsefield: MRS-Bull. 21, 42 (1992) Google Scholar
  49. N. A. Marks, M. W. Finnis, J. H. Harding, N. C. Pyper: J. Chem. Phys. 114, 4406 (2001) CrossRefGoogle Scholar
  50. K. W. Jacobsen, J. K. Norskov, M. J. Puskas: Phys. Rev. B 35, 7423 (1987) CrossRefGoogle Scholar
  51. N. A. Marks: J. Phys. Condens. Matter 14, 2901 (2002) CrossRefGoogle Scholar
  52. M. S. Daw: Phys. Rev. B 39, 7441 (1989) CrossRefGoogle Scholar
  53. Y. C. Wang, K. Scheerschmidt, U. Gösele: Phys. Rev. B 61, 12864 (2000) CrossRefGoogle Scholar
  54. H. R. Trebin: Comp. Phys. Commun. 121–122, 536 (1999) CrossRefGoogle Scholar
  55. A. K. Rappe, C. J. Casewit, K. S. Colwell, et al: J. Am. Chem. Soc. 114, 10024 (1992) CrossRefGoogle Scholar
  56. W. F. van Gunsteren, H. J. C. Berendsen: Angew. Chem., Int. Ed. Engl. 29, 992 (1990) CrossRefGoogle Scholar
  57. F. H. Stillinger, T. A. Weber: Phys. Rev. B 31, 5262 (1985) CrossRefGoogle Scholar
  58. R. Biswas, D. R. Hamann: Phys. Rev. B 36, 6434 (1987) CrossRefGoogle Scholar
  59. T. Takai, T. Halicioglu, W. A. Tiller: Scr. Metal. 19, 709 (1985) CrossRefGoogle Scholar
  60. C. P. Herrero: J. Mater. Res. 16, 2505 (2001) Google Scholar
  61. A. K. Nakano, B. J. Berne, P. Vashista, R. K. Kalia: Phys. Rev. B 39, 12520 (1989) CrossRefGoogle Scholar
  62. S. H. Garofalini: J. Non-Cryst. Solids 120, 1 (1990) CrossRefGoogle Scholar
  63. D. Timpel, K. Scheerschmidt, S. H. Garofalini: J. Non-Cryst. Solids 221, 187 (1997) CrossRefGoogle Scholar
  64. D. Timpel, K. Scheerschmidt: J. Non-Cryst. Solids 232–234, 245 (1998) CrossRefGoogle Scholar
  65. D. Timpel, M. Schaible, K. Scheerschmidt: J. Appl. Phys. 85, 2627 (1999) CrossRefGoogle Scholar
  66. M. I. Baskes: Phys. Rev. B 46, 2727 (1992) CrossRefGoogle Scholar
  67. M. W. Finnis, J. E. Sinclair: Philos. Mag. A 50, 45 (1984) Google Scholar
  68. J. Tersoff: Phys. Rev. Lett. 56, 632 (1986) CrossRefGoogle Scholar
  69. J. Tersoff: Phys. Rev. B 38, 9902 (1989) CrossRefGoogle Scholar
  70. J. Tersoff: Phys. Rev. B 39, 5566 (1989) CrossRefGoogle Scholar
  71. W. Dodson: Phys. Rev. B 35, 2795 (1987) CrossRefGoogle Scholar
  72. G. C. Abell: Phys. Rev. B 31, 6184 (1985) CrossRefGoogle Scholar
  73. D. W. Brenner: phys. stat. sol. B 217, 23 (2000) CrossRefGoogle Scholar
  74. M. V. R. Murty, H. A. Atwater: Phys. Rev. B 51, 4889 (1995) CrossRefGoogle Scholar
  75. D. W. Brenner: Phys. Rev. B 42, 9458 (1990) CrossRefGoogle Scholar
  76. A. J. Dyson, P. V. Smith: Surf. Sci. 355, 140 (1996) CrossRefGoogle Scholar
  77. K. Beardmore, R. Smith: Philos. Mag. A 74, 1439 (1996) Google Scholar
  78. K. Nordlund, J. Nord, J. Frantz, J. Keinonen: Comput. Mater. Sci. 18, 504 (2000) CrossRefGoogle Scholar
  79. T. J. Lenosky, B. Sadigh, E. Alonso, et al: Model. Simul. Mater. Sci. Eng. 8, 825 (2000) CrossRefGoogle Scholar
  80. S. D. Chao, J. D. Kress, A. Redondo: J. Chem. Phys. 120, 5558 (2004) CrossRefGoogle Scholar
  81. H. Balamane, T. Halicioglu, W. A. Tiller: Phys. Rev. B 46, 2250 (1992) CrossRefGoogle Scholar
  82. M. Kohyama, S. Takeda: Phys. Rev. B. 60, 8075 (1999) CrossRefGoogle Scholar
  83. M. Gharaibeh, S. K. Estreicher, P. A. Fedders: Physica B 273–274, 532 (1999) CrossRefGoogle Scholar
  84. S. K. Estreicher: phys. stat. sol. B 217, 513 (2000) CrossRefGoogle Scholar
  85. W. Windl: phys. stat. sol. B 226, 37 (2001) CrossRefGoogle Scholar
  86. S. Kohlhoff, P. Gumbsch, H. F. Fischmeister: Philos. Mag. A 64, 851 (1991) Google Scholar
  87. R. E. Rudd, J. Q. Broughton: Phys. Rev. B 58, R5893 (1998) CrossRefGoogle Scholar
  88. A. Y. Belov: Dislocations emerging at planar interfaces, in V. L. Indenbom, J. Lothe (Eds.): Elastic Strain Fields and Dislocation Mobility (Elsevier, Amsterdam 1992) pp. 391–446 Google Scholar
  89. J. E. Sinclair: J. Appl. Phys. 42, 5321 (1971) CrossRefGoogle Scholar
  90. D. G. Pettifor: Phys. Rev. Lett. 63, 2480 (1989) CrossRefGoogle Scholar
  91. C. M. Goringe, D. R. Bowler, E. Hernandez: Rep. Prog. Phys. 60, 1447 (1997) CrossRefGoogle Scholar
  92. A. P. Horsfield, A. M. Bratkovsky: J. Phys. Condens. Matter 12, R1 (2000) CrossRefGoogle Scholar
  93. D. A. Papaconstantopoulos, M. J. Mehl: J. Phys. Condens. Matter 15, R413 (2003) CrossRefGoogle Scholar
  94. D. G. Pettifor, I. I. Oleinik, D. Nguyen-Manh, V. Vitek: Comput. Mater. Sci. 23, 33 (2002) CrossRefGoogle Scholar
  95. D. Pettifor: From Exact to Approximate Theory: The Tight Binding Bond Model and Many-Body Potentials., vol. 48, Springer Series (Springer, Berlin, Heidelberg 1990) Google Scholar
  96. D. G. Pettifor, I. I. Oleinik: Phys. Rev. B 59, 8487 (1999) CrossRefGoogle Scholar
  97. D. G. Pettifor, I. I. Oleinik: Phys. Rev. Lett. 18, 4124 (2000) CrossRefGoogle Scholar
  98. D. G. Pettifor, M. W. Finnis, D. Nguyen-Manh, et al: Mater. Sci. Eng. A 365, 2 (2004) CrossRefGoogle Scholar
  99. A. P. Sutton: Electronic Structure of Materials (Clarendon Press, Oxford 1994) Google Scholar
  100. A. P. Sutton, M. W. Finnis, D. G. Pettifor, Y. Ohta: J. Phys. C 35, 35 (1988) CrossRefGoogle Scholar
  101. H. Hellmann: Einführung in die Quantenchemie (Deuticke, Leipzig 1937) Google Scholar
  102. R. P. Feynman: Phys. Rev. 56, 340 (1939) CrossRefGoogle Scholar
  103. J. C. Slater, G. F. Koster: Phys. Rev. 94, 1498 (1954) CrossRefGoogle Scholar
  104. C. Lanczos: J. Res. Natl. Bur. Stand. 45, 225 (1950) Google Scholar
  105. A. P. Horsfield, A. M. Bratovsky, M. Fear, et al: Phys. Rev. B 53, 12694 (1996) CrossRefGoogle Scholar
  106. R. Haydock: Recursive Solution of the Schrödinger Equation, vol. 35, Solid State Physics (Academic, London, New York 1980) Google Scholar
  107. F. Ducastelle: J. Phys. 31, 1055 (1970) Google Scholar
  108. O. F. Sankey, D. J. Niklewski: Phys. Rev. B 40, 3979 (1989) CrossRefGoogle Scholar
  109. I. Kwon, R. Biswas, C. Z. Wang, et al: Phys. Rev. B 49, 7242 (1994) CrossRefGoogle Scholar
  110. T. J. Lenosky, J. D. Kress, I. Kwon, et al: Phys. Rev. B 55, 1528 (1997) CrossRefGoogle Scholar
  111. D. Conrad: Molekulardynamische Untersuchungen für Oberflächen und Grenzflächen von Halbleitern, Thesis, Martin-Luther-Universität, Halle (1996) Google Scholar
  112. V. Kuhlmann: Entwicklung analytischer bond-order Potentiale für die empirische Molekulardynamik, Thesis, Martin-Luther-Universität, Halle (2006) Google Scholar
  113. D. Conrad, K. Scheerschmidt: Phys. Rev. B 58, 4538 (1998) CrossRefGoogle Scholar
  114. D. Conrad, K. Scheerschmidt, U. Gösele: Appl. Phys. Lett. 77, 49 (2000) CrossRefGoogle Scholar
  115. T. Harry, D. Bacon: Acta Mater. 50, 195 (2002) CrossRefGoogle Scholar
  116. V. V. Bulatov, J. F. Justo, W. Cai, et al: Philos. Mag. A 81, 1257 (2001) CrossRefGoogle Scholar
  117. E. T. Lilleodden, J. A. Zimmermann, S. M. Foiles, W. D. Nix: J. Mech. Phys. Solids 51, 901 (2003) CrossRefGoogle Scholar
  118. D. Wolf, S. Yip (Eds.): Materials Interfaces: Atomic-Level Structure and Properties (Chapman & Hall, London 1992) Google Scholar
  119. A. J. Haslam, D. Moldovan, S. R. Phillpot, et al: Comput. Mater. Sci. 23, 15 (2002) CrossRefGoogle Scholar
  120. X. Luo, G. Qian, E. G. Wang, C. Chen: Phys. Rev. B 59, 10125 (1999) CrossRefGoogle Scholar
  121. R. Benedek, D. N. Seidman, C. Woodward: J. Phys. Condens. Matter 14, 2877 (2002) CrossRefGoogle Scholar
  122. K. J. Bording, J. Tafto: Phys. Rev. B 62, 8098 (2000) CrossRefGoogle Scholar
  123. J. W. Kang, J. J. Seo, H. J. Hwang: J. Nanosci. Nanotechnol. 2, 687 (2002) CrossRefGoogle Scholar
  124. D. Srivasta, D. W. Brenner, J. D. Schall, et al: J. Phys. Chem. B 103, 4330 (1999) CrossRefGoogle Scholar
  125. C. Koitzsch, D. Conrad, K. Scheerschmidt, U. Gösele: J. Appl. Phys. 88, 7104 (2000) CrossRefGoogle Scholar
  126. E. Kaxiras: Comput. Mater. Sci. 6, 158 (1996) CrossRefGoogle Scholar
  127. D. Bimberg, M. Grundmann, N. N. Ledentsov: Quantum Dot Heterostructures (John Wiley & Sons., Chicester 1999) Google Scholar
  128. L. W. Wang, A. Zunger: Pseudopotential theory of nanometer silicon quantum dots, in P. V. Kamat, D. Meisel (Eds.): Semiconductor Nanoclusters – Physical, Chemical, and Catalytic Aspects (Elsevier, Amsterdam, New York 1997) Google Scholar
  129. H. Lee, J. A. Johnson, M. Y. He, et al: Appl. Phys. Lett. 78, 105 (2001) CrossRefGoogle Scholar
  130. K. Scheerschmidt, P. Werner: Characterization of structure and composition of quantum dots by transmission electron microscopy., in M. Grundmann (Ed.): Nano-Optoelectronics: Concepts, Physics and Devices (Springer, Berlin, Heidelberg, New York, Tokyo 2002) Chap. 3, pp. 67–98 Google Scholar
  131. K. Scheerschmidt, D. Conrad, H. Kirmse, R. Schneider, W. Neumann: Ultramicroscopy 81, 289 (2000) CrossRefGoogle Scholar
  132. E. Pehlke, N. Moll, A. Kley, M. Scheffler: Appl. Phys. A 65, 525 (1997) CrossRefGoogle Scholar
  133. P. N. Keating: Phys. Rev. 145, 637 (1966) CrossRefGoogle Scholar
  134. Y. Kikuchi, H. Sugii, K. Shintani: J. Appl. Phys. 89, 1191 (2001) CrossRefGoogle Scholar
  135. Q. Y. Tong, U. Gösele: Semiconductor Wafer Bonding: Science and Technology (Wiley, New York 1998) Google Scholar
  136. D. Conrad, K. Scheerschmidt, U. Gösele: Appl. Phys. Lett. 71, 2307 (1997) CrossRefGoogle Scholar
  137. D. Conrad, K. Scheerschmidt, U. Gösele: Appl. Phys. A 62, 7 (1996) CrossRefGoogle Scholar
  138. A. Y. Belov, R. Scholz, K. Scheerschmidt: Philos. Mag. Lett. 79, 531 (1999) CrossRefGoogle Scholar
  139. A. Y. Belov, D. Conrad, K. Scheerschmidt, U. Gösele: Philos. Mag. 77, 55 (1998) CrossRefGoogle Scholar
  140. A. Y. Belov, K. Scheerschmidt, U. Gösele: Phys. Status Solidi A 159, 171 (1999) Google Scholar
  141. D. J. Chadi: Phys. Rev. B 32, 6485 (1985) CrossRefGoogle Scholar
  142. K. Scheerschmidt: MRS Proc. 681E, I2.3 (2004) Google Scholar
  143. K. Scheerschmidt, V. Kuhlmann: Interf. Sci. 12, 157 (2004) CrossRefGoogle Scholar

Authors and Affiliations

  • Kurt Scheerschmidt
    • 1
  1. 1.Max Planck Institute of Microstructure PhysicsHalleGermany

Personalised recommendations