Dynamical Matrices and Free Energies

  • Stefan K. Estreicher
  • Mahdi Sanati
Part of the Topics in Applied Physics book series (TAP, volume 104)


The calculation of the entire dynamical matrix of a periodic supercell (containing a defect or not) provides several most useful pieces of information. At first, the eigenvalues of this matrix are all the normal mode frequencies of the cell, including the local, pseudolocal, and resonant modes associated with the defect under study. The eigenvalues can also be used to construct phonon densities of state which in turn allow the calculation of (Helmholtz) free energies, vibrational entropies, and specific heats. The eigenvectors of the dynamical matrix can be used to prepare a system in thermal equilibriumat a desired temperature. This allows constant-temperature MD simulations to be peformed without thermalization or thermostat. Applications to the calculation of vibrational lifetimes and decay channels are discussed. Finally, the vibrational, rotational, and charge-carrier contributions to the free energy are described. Configurational entropies are calculated in realistic systems.


71.10.-w 71.17.-m 71.23.-k 71.55.-i 63.20Mt 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. R. K. Kremer, M. Cardona, E. Schmitt, J. Blumm, S. K. Estreicher, M. Sanati, M. Bockowski, I. Grzegory, T. Suski, A. Jezowski: Phys. Rev. B 72, 075209 (2005) CrossRefGoogle Scholar
  2. S. J. Pearton, J. W. Corbett, M. Stavola: Hydrogen in Crystalline Semiconductors (Springer, Berlin, Heidelberg 1991) Google Scholar
  3. S. Limpijumnong, C. G. Van de Walle: Phys. Rev. B 68, 235203 (2003) CrossRefGoogle Scholar
  4. A. F. Wright, C. H. Seager, S. M. Myers, D. D. Koleske, A. A. Allerman: J. Appl. Phys. 94, 2311 (2003) CrossRefGoogle Scholar
  5. A. Carvalho, R. Jones, J. Coutinho, P. R. Briddon: J. Phys.: Condens. Matter 17, L155 (2005) CrossRefGoogle Scholar
  6. G. Davies: Phys. Rep. 176, 83 (1989) CrossRefGoogle Scholar
  7. S. Knack: Mater. Sci. Semic. Proc. 7, 125 (2005) CrossRefGoogle Scholar
  8. S. K. Estreicher, D. West, J. Goss, S. Knack, J. Weber: Phys. Rev. Lett. 90, 035504 (2003) CrossRefGoogle Scholar
  9. S. K. Estreicher, D. West, M. Sanati: Phys. Rev. B 72, R13532 (2005) CrossRefGoogle Scholar
  10. D. S'anchez-Portal, P. Ordej'on, E. Artacho, J. M. Soler: Int. J. Quant. Chem. 65, 453 (1997) CrossRefGoogle Scholar
  11. E. Artacho, D. S'anchez-Portal, P. Ordej'on, A. García, J. M. Soler: phys. stat. sol. (b) 215, 809 (1999) CrossRefGoogle Scholar
  12. D. M. Ceperley, B. J. Adler: Phys. Rev. Lett. 45, 566 (1980) CrossRefGoogle Scholar
  13. S. Perdew, A. Zunger: Phys. Rev. B 32, 5048 (1981) CrossRefGoogle Scholar
  14. L. Kleiman, D. M. Bylander: Phys. Rev. Lett. 48, 1425 (1982) CrossRefGoogle Scholar
  15. O. F. Sankey, D. J. Niklevski: Phys. Rev. B 40, 3979 (1989) CrossRefGoogle Scholar
  16. O. F. Sankey, D. J. Niklevski, D. A. Drabold, J. D. Dow: Phys. Rev. B 41, 12750 (1990) CrossRefGoogle Scholar
  17. A. A. Demkov, J. Ortega, O. F. Sankey, M. P. Grumbach: Phys. Rev. B 52, 1618 (1995) CrossRefGoogle Scholar
  18. H. J. Monkhorst, J. D. Pack: Phys. Rev. B 13, 5188 (1976) CrossRefGoogle Scholar
  19. T. Inui, Y. Tanabe, Y. Onodera: Group Theory and Its Applications in Physics (Springer, Berlin, Heidelberg 1990) Google Scholar
  20. M. P. Allen, D. J. Tildesley: Computer Simulations of Liquids (Clarendon, Oxford 1987) Google Scholar
  21. J. L. Gavartin, D. J. Bacon: Comp. Mater. Sci. 10, 75 (1998) CrossRefGoogle Scholar
  22. S. Baroni, P. Gioannozzi, A. Testa: Phys. Rev. Lett. 58, 1861 (1987) CrossRefGoogle Scholar
  23. A. Fleszar, X. Gonze: Phys. Rev. Lett. 64, 2961 (1990) CrossRefGoogle Scholar
  24. X. Gonze, C. Lee: Phys. Rev. B 55, 10355 (1997) CrossRefGoogle Scholar
  25. J. M. Pruneda, S. K. Estreicher, J. Junquera, J. Ferrer, P. Ordej'on: Phys. Rev. B 65, 075210 (2002) CrossRefGoogle Scholar
  26. P. Ordej'on, D. A. Drabold, R. M. Martin, S. Itoh: Phys. Rev. Lett. 75, 1324 (1995) CrossRefGoogle Scholar
  27. D. West, S. K. Estreicher: Phys. Rev. Lett. 96, 115504 (2006) CrossRefGoogle Scholar
  28. J. L. Gavartin, A. M. Stoneham: Phil. Trans. Roy. Soc. Lond. A 361, 275 (2003) CrossRefGoogle Scholar
  29. M. Budde, G. Luepke, C. Parks Cheney, N. H. Tolk, L. Feldman: Phys. Rev. Lett. 85, 1452 (2000) CrossRefGoogle Scholar
  30. M. Budde, G. Luepke, C. Parks Cheney, N. H. Tolk, L. C. Feldman: Phys. Rev. Lett. 85, 1452 (2000) CrossRefGoogle Scholar
  31. G. Lupke, X. Zhang, B. Sun, A. Fraser, N. H. Tolk, L. C. Feldman: Phys. Rev. Lett. 88, 135501 (2002) CrossRefGoogle Scholar
  32. P. Flubacher, A. J. Leadbetter, J. A. Morrison: Philos. Mag. 4, 273 (1959) Google Scholar
  33. F. Widulle, T. Ruf, M. Konuma, I. Silier, M. Cardona, W. Kriegseis, V. I. Ozhogin: Solid State Commun. 118, 1 (2002) CrossRefGoogle Scholar
  34. M. Cardona, R. K. Kremer, M. Sanati, S. K. Estreicher, T. R. Anthony: Solid State Commun. 133, 465 (2005) CrossRefGoogle Scholar
  35. M. Sanati, S. K. Estreicher, M. Cardona: Solid State Commun. 131, 229 (2004) CrossRefGoogle Scholar
  36. W. Schnelle, E. Gmelin: J. Phys.: Condens. Matter 13, 6087 (2001) CrossRefGoogle Scholar
  37. S. K. Estreicher, M. Sanati, D. West, F. Ruymgaart: Phys. Rev. B 70, 125209 (2004) CrossRefGoogle Scholar
  38. S. K. Estreicher: Acta Phys. Polon. A 102, 403 (2002) Google Scholar
  39. S. K. Estreicher, K. Wells, P. A. Fedders, P. Ordej'on: J. Phys.: Condens. Matter 13, 62 (2001) CrossRefGoogle Scholar
  40. E. E. Chen, M. Stavola, W. B. Fowler: Phys. Rev. B 65, 245208 (2002) CrossRefGoogle Scholar
  41. M. Sanati, S. K. Estreicher: Phys. Rev. B 72, 165206 (2005) CrossRefGoogle Scholar
  42. J. Adey, R. Jones, D. W. Palmer, P. R. Briddon, S. "Oberg: Phys. Rev. Lett. 93, 055504 (2004) CrossRefGoogle Scholar

Authors and Affiliations

  • Stefan K. Estreicher
    • 1
  • Mahdi Sanati
    • 1
  1. 1.Texas Tech UniversityPhysics DepartmentLubbockUSA

Personalised recommendations