Collaborative Agent Tuning: Performance Enhancement on Mobile Devices

  • Conor Muldoon
  • Gregory M. P. O’Hare
  • Michel J. O’Grady
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3963)


Ambient intelligence envisages a world saturated with sensors and other embedded computing technologies, operating transparently, and accessible to all in a seamless and intuitive manner. Intelligent agents of varying capabilities may well form the essential constituent entities around which this vision is realized. However, the practical realization of this vision will severely exacerbate the complexity of existing software solutions, a problem that autonomic computing was originally conceived to address. Thus we can conjecture that the incorporation of autonomic principles into the design of Multi-Agent Systems is indeed a desirable objective. As an illustration of how this may be achieved, a strategy termed Collaborative Agent Tuning is described, which seeks to optimise agent performance on computationally limited devices. A classic mobile computing application is used to illustrate the principles involved.


Mobile Device Mobile Computing Ambient Intelligence Agent Factory Joint Commitment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. IEEE Computer 36(1), 41–50 (2003)Google Scholar
  2. 2.
    Aarts, E., Marzano, S. (eds.): The New Everyday: Views on Ambient Intelligence. 010 Publishers, Rotterdam (2003)Google Scholar
  3. 3.
    O’Grady, M.J., O’Hare, G.M.P.: Just-in-Time Multimedia Distribution in a Mobile Computing Environment. IEEE Multimedia 11(4), 62–74 (2004)CrossRefGoogle Scholar
  4. 4.
    Rao, A.S., Georgeff, M.P.: Modelling Rational Agents within a BDI Architecture. In: Principles of Knowledge Representation & Reasoning, San Mateo, CA (1991)Google Scholar
  5. 5.
    O’Hare, G.M.P., O’Grady, M.J.: Gulliver’s Genie: A Multi-Agent System for Ubiquitous and Intelligent Content Delivery. Computer Communications 26(11), 1177–1187 (2003)CrossRefGoogle Scholar
  6. 6.
    Keegan, S., O’Hare, G.M.P.: EasiShop – Agent-Based Cross Merchant Product Comparison Shopping for the Mobile User. In: Proceedings of 1st International Conference on Information & Communication Technologies: From Theory to Applications (ICTTA 2004), Damascus, Syria (2004)Google Scholar
  7. 7.
    Strahan, R., O’Hare, G.M.P., Phelan, D., Muldoon, C., Collier, R.: ACCESS: An Agent based Architecture for the Rapid Prototyping of Location Aware Services. In: Proceedings of the 5th International Conference on Computational Science (ICCS 2005), Emory University Atlanta, USA (2005)Google Scholar
  8. 8.
    Soh, L.-K., Tsatsoulis, C.: Agent-Based Argumentative Negotiations with Case-Based Reasoning. In: AAAI Fall Symposium Series on Negotiation Methods for Autonomous Cooperative Systems, North Falmouth, Mass, pp. 16–25 (2001)Google Scholar
  9. 9.
    Groth, P.T., Suri, N.: CPU Resource Control and Accounting in the NOMADS Mobile Agent System, Technical Report, Institute for Human & Machine Cognition, University of West Florida (2002)Google Scholar
  10. 10.
    Bigus, J.P., Hellerstein, J.L., Squillante, M.S. Auto Tune: A Generic Agent for Automated Performance Tuning, Proceedings of the International Conference on Practical Application of Intelligent Agents and Multi-Agents (PAAM), 2000. Google Scholar
  11. 11.
    Bigus, J.P., Schlosnagle, D.A., Pilgrim, J.R., Mills III, W.N., Diao, Y.: ABLE: A Toolkit for Building Multiagent Autonomic Systems. IBM Systems Journal 41(3), 350–371 (2002)CrossRefGoogle Scholar
  12. 12.
    Liu, H., Parashar, M.: DIOS++: A Framework for Rule-Based Autonomic Management of Distributed Scientific Applications. In: Kosch, H., Böszörményi, L., Hellwagner, H. (eds.) Euro-Par 2003. LNCS, vol. 2790, pp. 66–73. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Walsh, W.E., Wellman, M.P.: A market protocol for decentralized task allocation: Extended version. In: Proceedings of the Third International Conference on Multi-Agent Systems (ICMAS 1998) (1998)Google Scholar
  14. 14.
    Cohen, P.R., Levesque, H.J.: Intention Is Choice with Commitment. Artificial Intelligence 42, 213–261 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Levesque, H.J., Cohen, P.R., Nunes, J.H.T.: On Acting Together. In: Proceedings of AAAI 1990, pp. 94–99 (1990)Google Scholar
  16. 16.
    Singh, M.P.: A Social Semantics for Agent Communication Languages. In: Dignum, F.P.M., Greaves, M. (eds.) Issues in Agent Communication. LNCS, vol. 1916, pp. 31–45. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Tarkoma, S., Laukkanen, M.: Supporting Software Agents on Small Devices. In: Proceedings of the First International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2002), Bologna, Italy (July 2002)Google Scholar
  18. 18.
    Foundation for Intelligent Physical Agents (FIPA),
  19. 19.
    Johansen, D., Lauvset, K., Van Renesse, R., Schneider, F., Sudmann, N., Jacobsen, K.: A Tacoma Retrospective. Software Practice and Experience 32(6), 605–619 (2002)zbMATHCrossRefGoogle Scholar
  20. 20.
    Bergenti, F., Poggi, A.: LEAP: A FIPA Platform for Handheld and Mobile Devices. In: Meyer, J.-J.C., Tambe, M. (eds.) ATAL 2001. LNCS, vol. 2333, p. 436. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    The Agent Oriented Software Group,
  22. 22.
    Koch, F., Meyer, J.-J.C., Dignum, F.P.M., Rahwan, I.: Programming deliberative agents for mobile services: The 3APL-M platform. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) PROMAS 2005. LNCS, vol. 3862, pp. 222–235. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Rahwan, T., Rahwan, T., Rahwan, I., Ashri, R.: Agent-Based Support for Mobile Users Using AgentSpeak(L). In: Giorgini, P., Henderson-Sellers, B., Winikoff, M. (eds.) AOIS 2003. LNCS (LNAI), vol. 3030, pp. 45–60. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. 24.
    O’Hare, G.M.P.: Agent Factory: An Environment for the Fabrication of Multi-Agent Systems. In: O’Hare, G.M.P., Jennings, N. (eds.) Foundations of Distributed Artificial Intelligence, pp. 449–484. John Wiley and Sons Inc., Chichester (1996)Google Scholar
  25. 25.
    Collier, R., O’Hare, G.M.P., Lowen, T., Rooney, C.: Beyond Prototyping in the Factory of Agents. In: Mařík, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS, vol. 2691, p. 383. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. 26.
    Jennings, N.R.: Controlling Cooperative Problem Solving in Industrial Multi-Agent Systems using Joint Intentions. Artificial Intelligence 75(2), 195–240 (1995)CrossRefGoogle Scholar
  27. 27.
    Kumar, S., Cohen, P.R., Levesque, H.J.: The Adaptive Agent Architecture: Achieving Fault-Tolerance Using Persistent Broker Teams. In: Proceedings of Fourth International Conference on Multi-Agent Systems (ICMAS 2000), Boston, MA, pp. 159–166. IEEE Press, Los Alamitos (2000a)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Conor Muldoon
    • 1
  • Gregory M. P. O’Hare
    • 2
  • Michel J. O’Grady
    • 2
  1. 1.Practice & Research in Intelligent Systems & Media (PRISM) Laboratory, School of Computer Science & InformaticsUniversity College Dublin (UCD)Belfield, Dublin 4Ireland
  2. 2.Adaptive Information Cluster (AIC), School of Computer Science & InformaticsUniversity College Dublin (UCD)Belfield, Dublin 4Ireland

Personalised recommendations