Engineering Complex Adaptive Systems Using Situated Multi-agents

Some Selected Works and Contributions
  • Salima Hassas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3963)


A complex system is a set of entities interrelated in a retroactive way. The system dynamics is held by the retroactive interactions occuring between its components, making the behaviour, structure or organisation of the global system emergent and non predictable from/non reducible to the individual behaviour or structure of its components.This characteristic of complex systems, makes them more considered from their organisational point of view rather than from the structural/ behavioural aspects of their components. The multi-agent paradigm provides a very suitable tool for modeling/engineering such systems. Many examples exist in the MAS litterature, showing the use of the multi-agent paradigm to develop such systems. However, existing works propose ad hoc approaches/mechanisms. In this paper we discuss some of these works and present a set of intuitive guidelines for engineering self-organising systems, through their positionning at the heart of 3 domains: Complex Adaptive Systems, Non Linear Dynamic Systems and Situated Multi-Agents.


Complex Systems Situated Multi-Agents Retroactive Interactions Non Linearity Self-organisation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Babaoglu, O., Canright, G., Deutsch, A., Di Caro, G., Ducatelle, F., Gambardella, L., Ganguly, N., Jelasity, M., Montemanni, R., Montresor, A.: Design patterns from biology for distributed computing. In: Proceedings of the European Conference on Complex Systems (to appear) (November 2005)Google Scholar
  2. 2.
    Babaoglu, O., Meling, H., Montresor, A.: Anthill: A framework for the development of agent-based paeer to peer systems. In: Proceedings of the ICDCS 2002, Vienna, A. (July 2002)Google Scholar
  3. 3.
    Barabasi, A., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Bonabeau, E., Théraulaz, G., Fourcassié, V., Deneubourg, J.-L.: The phase-ordering kinetics of cemetery organization in ants. Technical Report 98-01-008, Santa Fe Institute (1998)Google Scholar
  5. 5.
    Bourjot, C., Chevrier, V., Thomas, V.: A new swarm mechanism based on social spiders colonies: from web weaving to region detection. Web Intelligence and Agent Systems: An International Journal - WIAS 1(1), 47–64 (2003)Google Scholar
  6. 6.
    Braginsky, D., Estrin, D.: Rumour routing algorithm for sensor networks. In: Proceedings of the Fisrt Workshop on Sensor Networks and Applications (WSNA), Atlanta, GA, USA (September 2002)Google Scholar
  7. 7.
    Cicirello, V.A., Smith, S.S.: Wasp-like agents for distributed factory coordination. Journal of Autonomous Agents and Multi-Agent Sytems 8(3), 237–266 (2004)CrossRefGoogle Scholar
  8. 8.
    Dorigo, M., Di Caro, G.: Ants colonies for adaptive routing in packet-switched communication networks. LNCS, p. 673 (1998)Google Scholar
  9. 9.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics-Part B 26(1), 29–41 (1996)CrossRefGoogle Scholar
  10. 10.
    Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. In: Proceedings of the ACM SIGCOMM 1999, Cambridge, MA, USA, pp. 251–262 (1999)Google Scholar
  11. 11.
    Fenet, S., Hassas, S.: A distributed intrusion detection and response system based on mobile autonomous agents using social insects communication. Electronic Notes in Theoretical Computer Science 63, 21–31 (2002)CrossRefGoogle Scholar
  12. 12.
    Fenet, S., Hassas, S.: An ant based system for dynamic multiple criteria balancing. In: Proceedings of the Fisrt Workshop on ANT Systems, Brussels, Belgium (September 1998)Google Scholar
  13. 13.
    Forrest, S., Hofmeyr, S., Somayaji, A.: Computer immunology. Communications of the ACM (1997)Google Scholar
  14. 14.
    Foukia, N., Hassas, S., Fenet, S., Albuquerque, P.: Combining immune systems and social insect metaphors: A paradigm for distributed intrusion detection and response system. In: Horlait, E., Magedanz, T., Glitho, R.H. (eds.) MATA 2003. LNCS, vol. 2881, pp. 251–264. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Grassé, P.P.: La reconstruction du nid et les interactions inter-individuelles chez les bellicoitermes natalenis et cubitermes, la theorie de la stigmergie - essai d’interpretation des termites constructeurs. Insectes Sociaux 6, 41–81 (1959)CrossRefGoogle Scholar
  16. 16.
    Hassas, S.: Using swarm intelligence for dynamic web content organization. In: Proceedings of the IEEE Swarm Intelligence Symposium, pp. 19–25. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  17. 17.
    Hofmeyr, S., Forrest, S.: Architecture for an artificial immune system. Evolutionary Computation 7(1), 1289–1296 (2000)Google Scholar
  18. 18.
    Holland, J.H.: Adaptation in natural and artificial systems. MIT Press, Cambridge (1992)Google Scholar
  19. 19.
    Holland, O., Melhuis, C.: Stigmergy, self-organization and sorting in collective robotics. Artificial Life 5(2), 173–202 (1999)CrossRefGoogle Scholar
  20. 20.
    Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-based aggregation in large dynamic networks. ACM Trans. Comput. Syst. 23(1), 219–252 (2005)CrossRefGoogle Scholar
  21. 21.
    Kirtland, M.: he programmable web: Web services provides building blocks for the microsoft .net framework. MSDN Magazine 15 (2000)Google Scholar
  22. 22.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Liu, J., Zhang, S., Ye, Y.: Understanding emergent web regularities with information foraging agents. In: Proceedings of the First International Conference on Autonomous Agents and Multi-Agents Systems (AAMAS 2002), Bologna, Italy (July 2002)Google Scholar
  24. 24.
    Menczer, F., Belew, R.K.: Adaptive retrieval agents: Internalizing local context and scaling up to the web. Machine Learning 39(2/3), 203–242 (2000)zbMATHCrossRefGoogle Scholar
  25. 25.
    Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002)CrossRefGoogle Scholar
  26. 26.
    Mamei, M., Zambonelli, F.: Programming stigmergic coordination with the tota middleware. In: Proceedings of the Fourth International Conference on Autonomous Agents and Multi-Agents Systems (AAMAS 2005), Utrecht, Netherlands, pp. 415–422 (July 2005)Google Scholar
  27. 27.
    Mamei, M., Zambonelli, F., Leonardi, L.: Tuples on the air: a middleware for context-aware computing in dynamic networks. In: Proceedings of the Fisrt International ICDCS Workshop on Mobile Computing Middleware (MCM 2003) Providence, Rhode Island (May 2002)Google Scholar
  28. 28.
    Albert, R., Barabasi, A.-L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74 (2001)Google Scholar
  29. 29.
    Reid, D.A.: Enactivism, Available at:
  30. 30.
    Schoonderwoerd, R., Holland, O., Bruten, J.: Ant-like agents for load balancing in telecommunications networks. In: Proceedings of the 1st International Conference on Autonomous Agents, February 5-8, pp. 209–216 (1997)Google Scholar
  31. 31.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Salima Hassas
    • 1
  1. 1.LIRIS, Nautibus, 8 Bd Niels BohrUniversité Claude Bernard-Lyon 1VilleurbanneFrance

Personalised recommendations