Goal Directed Shortest Path Queries Using Precomputed Cluster Distances

  • Jens Maue
  • Peter Sanders
  • Domagoj Matijevic
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4007)


We demonstrate how Dijkstra’s algorithm for shortest path queries can be accelerated by using precomputed shortest path distances. Our approach allows a completely flexible tradeoff between query time and space consumption for precomputed distances. In particular, sublinear space is sufficient to give the search a strong “sense of direction”. We evaluate our approach experimentally using large, real-world road networks.


Short Path Road Network Query Time Speedup Technique Forward Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Gutman, R.: Reach-based routing: A new approach to shortest path algorithms optimized for road networks. In: 6th Workshop on Algorithm Engineering and Experiments (2004)Google Scholar
  3. 3.
    Sanders, P., Schultes, D.: Highway hierarchies hasten exact shortest path queries. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 568–579. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Goldberg, A., Kaplan, H., Werneck, R.: Reach for A *: Efficient point-to-point shortest path algorithms. In: Workshop on Algorithm Engineering & Experiments, Miami (2006)Google Scholar
  5. 5.
    Goldberg, A.V., Harrelson, C.: Computing the shortest path: A * meets graph theory. In: 16th ACM-SIAM Symposium on Discrete Algorithms, pp. 156–165 (2005)Google Scholar
  6. 6.
    Goldberg, A.V., Werneck, R.F.: An efficient external memory shortest path algorithm. In: Workshop on Algorithm Engineering & Experiments, pp. 26–40 (2005)Google Scholar
  7. 7.
    Goldberg, A.: personal communication (2005)Google Scholar
  8. 8.
    Sanders, P.: Speeding up shortest path queries using a sample of precomputed distances. In: Workshop on Algorithmic Methods for Railway Optimization, Dagstuhl (June 2004), slides at:
  9. 9.
    Möhring, R.H., Schilling, H., Schütz, B., Wagner, D., Willhalm, T.: Partitioning graphs to speed up Dijkstra’s algorithm. In: 4th International Workshop on Efficient and Experimental Algorithms (2005)Google Scholar
  10. 10.
    Lauther, U.: An extremely fast, exact algorithm for finding shortest paths in static networks with geographical background. In: Münster GI-Days (2004)Google Scholar
  11. 11.
    Schulz, F., Wagner, D., Zaroliagis, C.D.: Using multi-level graphs for timetable information. In: Mount, D.M., Stein, C. (eds.) ALENEX 2002. LNCS, vol. 2409, pp. 43–59. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Wagner, D., Willhalm, T.: Geometric speed-up techniques for finding shortest paths in large sparse graphs. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 776–787. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Karypis, G., Kumar, V.: Metis: A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices (1995),
  14. 14.
    Mehlhorn, K., Näher, S.: The LEDA Platform of Combinatorial and Geometric Computing. Cambridge University Press, Cambridge (1999)Google Scholar
  15. 15.
    U.S. Census Bureau: UA Census 2000 TIGER/Line files (2002),

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jens Maue
    • 1
  • Peter Sanders
    • 2
  • Domagoj Matijevic
    • 1
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany
  2. 2.Universität KarlsruheKarlsruheGermany

Personalised recommendations