Average-Time Complexity of Gossiping in Radio Networks

  • Bogdan S. Chlebus
  • Dariusz R. Kowalski
  • Mariusz A. Rokicki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4056)


Radio networks model wireless synchronous communication with only one wave frequency used for transmissions. In the problem of many-to-all (M2A) communication, some nodes hold input rumors, and the goal is to have all nodes learn all the rumors. We study the average time complexity of distributed many-to-all communication by deterministic protocols in directed networks under two scenarios: of combined messages, in which all input rumors can be sent in one packet, and of separate messages, in which every rumor requires a separate packet to be transmitted. Let n denote the size of a network and k be the number of nodes activated with rumors; the case when k = n is called gossiping. We give a gossiping protocol for combined messages that works in the average time \({\mathcal O}(n/\log n)\), which is shown to be optimal. For the general M2A communication problem, we show that it can be performed in the average time \({\mathcal O}(\min\{k\log(n/k),n/\log n\})\) with combined messages, and that Ω(k/logn + logn) is a lower bound. We give a gossiping protocol for separate messages that works in the average time \({\mathcal O}(n\log n)\), which is shown to be optimal. For the general M2A communication problem, we develop a protocol for separate messages with the average time \({\mathcal O}(k\log(n/k)\log n)\), and show that Ω(k logn) is a lower bound.


Radio Network Relay Node Average Complexity Communication Task Average Time Complexity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A lower bound for radio broadcast. Journal of Computer and System Sciences 43, 290–298 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time complexity of broadcast in radio networks: An exponential gap between determinism and randomization. J. Computer and System Sciences 45, 104–126 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bar-Yehuda, R., Israeli, A., Itai, A.: Multiple communication in multi-hop radio networks. SIAM J. on Computing 22, 875–887 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chlamtac, I., Kutten, S.: On broadcasting in radio networks - problem analysis and protocol design. IEEE Transactions on Communication 33, 1240–1246 (1985)zbMATHCrossRefGoogle Scholar
  5. 5.
    Chlebus, B.S., Gąsieniec, L., Gibbons, A.M., Pelc, A., Rytter, W.: Deterministic broadcasting in ad hoc radio networks. Distributed Computing 15, 27–38 (2002)CrossRefGoogle Scholar
  6. 6.
    Chlebus, B.S., Gąsieniec, L., Lingas, A., Pagourtzis, A.: Oblivious gossiping in ad-hoc radio networks. In: Proc. 5th International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications (DIALM), pp. 44–51 (2001)Google Scholar
  7. 7.
    Christersson, M., Gąsieniec, L., Lingas, A.: Gossiping with bounded size messages in ad hoc radio networks. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 377–389. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Chrobak, M., Gąsieniec, L., Rytter, W.: Fast broadcasting and gossiping in radio networks. Journal of Algorithms 43, 177–189 (2002)zbMATHCrossRefGoogle Scholar
  9. 9.
    Clementi, A.E.F., Monti, A., Silvestri, R.: Distributed broadcasting in radio networks of unknown topology. Theoretical Computer Science 302, 337–364 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown topology. In: Proc. 44th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 492–501 (2003)Google Scholar
  11. 11.
    De Bonis, A., Gąsieniec, L., Vaccaro, U.: Generalized framework for selectors with applications in optimal group testing. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 81–96. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Elsässer, R., Gąsieniec, L.: Radio communication in random graphs. In: Proc. 17th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 309–315 (2005)Google Scholar
  13. 13.
    Ga̧sieniec, L., Kranakis, E., Pelc, A., Xin, Q.: Deterministic M2M multicast in radio networks. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 670–682. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Gąsieniec, L., Radzik, T., Xin, Q.: Faster deterministic gossiping in directed ad hoc radio networks. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 397–407. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Kowalski, D.R., Pelc, A.: Time of radio broadcasting: adaptiveness vs. obliviousness and randomization vs. determinism. In: Proc. 10th International Colloquium on Structural Information and Communication Complexity (SIROCCO), pp. 195–210 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Bogdan S. Chlebus
    • 1
  • Dariusz R. Kowalski
    • 2
  • Mariusz A. Rokicki
    • 1
  1. 1.Department of Computer Science and Eng.UCDHSCDenverUSA
  2. 2.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK

Personalised recommendations