How to Meet in Anonymous Network

  • Dariusz R. Kowalski
  • Adam Malinowski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4056)


A set of k mobile agents with distinct identifiers and located in nodes of an unknown anonymous connected network, have to meet at some node. We show that this gathering problem is no harder than its special case for k = 2, called the rendezvous problem, and design deterministic protocols solving the rendezvous problem with arbitrary startups in rings and in general networks. The measure of performance is the number of steps since the startup of the last agent until the rendezvous is achieved.

For rings we design an oblivious protocol with cost \({\cal O}(n\log \ell)\), where n is the size of the network and ℓ is the minimum label of participating agents. This result is asymptotically optimal due to the lower bound showed in [18].

For general networks we show a protocol with cost polynomial in n and logℓ, independent of the maximum difference τ of startup times, which answers in affirmative the open question from [22].


mobile agents gathering rendezvous anonymous networks distributed algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adler, M., Räcke, H., Sivadasan, N., Sohler, C., Vöcking, B.: Randomized pursuit-evasion in graphs. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 901–912. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Aleliunas, R., Karp, R.M., Lipton, R.J., Lovász, L., Rackoff, C.: Random walks, universal traversal sequences, and the complexity of maze problems. In: Proc. 20th Annual Symposium on Foundations of Computer Science (FOCS 1979), pp. 218–223 (1979)Google Scholar
  3. 3.
    Alpern, S.: The rendezvous search problem. SIAM J. on Control and Optimization 33, 673–683 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Alpern, S.: Rendezvous search on labelled networks. Naval Research Logistics 49, 256–274 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Alpern, S., Gal, S.: The theory of search games and rendezvous. In: Int. Series in Operations research and Management Science, Kluwer Academic Publisher, Dordrecht (2002)Google Scholar
  6. 6.
    Alpern, J., Baston, V., Essegaier, S.: Rendezvous search on a graph. Journal of Applied Probability 36, 223–231 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Anderson, E., Weber, R.: The rendezvous problem on discrete locations. Journal of Applied Probability 28, 839–851 (1990)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Anderson, E., Fekete, S.: Asymmetric rendezvous on the plane. In: Proc. 14th Annual ACM Symp. on Computational Geometry (1998)Google Scholar
  9. 9.
    Anderson, E., Fekete, S.: Two-dimensional rendezvous search. Oper. Research 49, 107–118 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Baston, V., Gal, S.: Rendezvous on the line when the players’ initial distance is given by an unknown probability distribution. SIAM J. on Control and Optimization 36, 1880–1889 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Baston, V., Gal, S.: Rendezvous search when marks are left at the starting points. Naval Reaserch Logistics 48, 722–731 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Bshouty, N.H., Higham, L., Warpechowska-Gruca, J.: Meeting times of random walks on graphs. Information Processing Letters 69(5), 259–265 (1999)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Cielibak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gathering problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Cook, S.A., McKenzie, P.: Problems complete for deterministic logarithmic space. Journal of Algorithms 8(5), 385–394 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Coppersmith, D., Doyle, P., Raghavan, P., Snir, M.: Random walks on weighted graphs, and applications to on-line algorithms. In: Proc. 22nd Annual ACM Symp. on Theory of Computing (STOC 1990), pp. 369–378 (1990)Google Scholar
  16. 16.
    Coppersmith, D., Tetali, P., Winkler, P.: Collisions among random walks on a graph. SIAM J. on Discrete Math. 6, 363–374 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asynchronous deterministic rendezvous in graphs. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 271–282. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Dessmark, A., Fraigniaud, P., Pelc, A.: Deterministic rendezvous in graphs. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 184–195. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous oblivious robots with limited visibility. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 247–258. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Gal, S.: endezvous search on the line. Operations Research 47, 974–976 (1999)zbMATHCrossRefGoogle Scholar
  21. 21.
    Israeli, A., Jalfon, M.: Token management schemes and random walks yield self stabilizing mutual exclusion. In: Proc. 9th ACM Symp. on Principles of Distributed Computing (PODC 1990), pp. 119–131 (1990)Google Scholar
  22. 22.
    Kowalski, D., Pelc, A.: Polynomial deterministic rendezvous in arbitrary graphs. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 644–656. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous in a ring. In: Proc. 23rd Int. Conference on Distributed Computing Systems (ICDCS 2003), pp. 592–599 (2003)Google Scholar
  24. 24.
    Lim, W., Alpern, S.: Minimax rendezvous on the line. SIAM J. on Control and Optimization 34, 1650–1665 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Mayer, A.J., Ostrovsky, R., Yung, M.: Self-stabilizing algorithms for synchronous unidirectional rings. In: Proc. 7th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1996), pp. 564–573 (1996)Google Scholar
  26. 26.
    Motwani, Raghawan: Randomized Algorithms. Cambridge University Press, Cambridge (1995)zbMATHGoogle Scholar
  27. 27.
    Schelling, T.: The strategy of conflict. Oxford University Press, Oxford (1960)Google Scholar
  28. 28.
    Thomas, L.: Finding your kids when they are lost. Journal on Operational Res. Soc. 43, 637–639 (1992)zbMATHGoogle Scholar
  29. 29.
    Yu, X., Yung, M.: Agent rendezvous: a dynamic symmetry-breaking problem. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 610–621. Springer, Heidelberg (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Dariusz R. Kowalski
    • 1
  • Adam Malinowski
    • 2
  1. 1.Department of Computer ScienceThe University of LiverpoolLiverpoolUK
  2. 2.Instytut InformatykiUniwersytet WarszawskiWarszawaPoland

Personalised recommendations