Distributed Chasing of Network Intruders

  • Lélia Blin
  • Pierre Fraigniaud
  • Nicolas Nisse
  • Sandrine Vial
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4056)


This paper addresses the graph searching problem in a distributed setting. We describe a distributed protocol that enables searchers with logarithmic size memory to clear any network, in a fully decentralized manner. The search strategy for the network in which the searchers are launched is computed online by the searchers themselves without knowing the topology of the network in advance. It performs in an asynchronous environment, i.e., it implements the necessary synchronization mechanism in a decentralized manner. In every network, our protocol performs a connected strategy using at most k + 1 searchers, where k is the minimum number of searchers required to clear the network in a monotone connected way, computed in the centralized and synchronous setting.


Search Strategy Lexicographic Order Current Node Extended Move Port Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnborg, S., Corneil, D., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Alg. Disc. Meth. 8(2), 277–284 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Capture of an intruder by mobile agents. In: 14th ACM Symp. on Parallel Algorithms and Architectures (SPAA), pp. 200–209 (2002)Google Scholar
  3. 3.
    Barrière, L., Fraigniaud, P., Santoro, N., Thilikos, D.M.: Searching is not jumping. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 34–45. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Bienstock, D.: Graph searching, path-width, tree-width and related problems (a survey). DIMACS Ser. in Discrete Mathematics and Theoretical Computer Science, vol. 5, pp. 33–49 (1991)Google Scholar
  5. 5.
    Bienstock, D., Seymour, P.: Monotonicity in graph searching. Journal of Algorithms 12, 239–245 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Breisch, R.: An intuitive approach to speleotopology. Southwestern Cavers VI(5), 72–78 (1967)Google Scholar
  7. 7.
    Feige, U., Hajiaghayi, M., Lee, J.: Improved approximation algorithms for minimum-weight vertex separators. In: 37th ACM Symposium on Theory of Computing (STOC) (2005)Google Scholar
  8. 8.
    Flocchini, P., Luccio, F.L., Song, L.: Decontamination of chordal rings and tori. In: Proc. of 8th Workshop on Advances in Parallel and Distributed Computational Models (APDCM) (2006)Google Scholar
  9. 9.
    Flocchini, P., Huang, M.J., Luccio, F.L.: Contiguous search in the hypercube for capturing an intruder. In: Proc. of 18th IEEE Int. Parallel and Distributed Processing Symposium (IPDPS) (2005)Google Scholar
  10. 10.
    Fomin, F., Fraigniaud, P., Nisse, N.: Nondeterministic Graph Searching: From Pathwidth to Treewidth. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 364–375. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Fomin, F.V., Kratsch, D., Todinca, I.: Exact (Exponential) algorithms for treewidth and minimum fill-in. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 568–580. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Fraigniaud, P., Ilcinkas, D.: Digraphs Exploration with Little Memory. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 246–257. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Fraigniaud, P., Nisse, N.: Connected Treewidth and Connected Graph Searching. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 479–490. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Kirousis, L., Papadimitriou, C.: Interval graphs and searching. Discrete Math. 55, 181–184 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kirousis, L., Papadimitriou, C.: Searching and Pebbling. Theoretical Computer Science 47, 205–218 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Lapaugh, A.: Recontamination does not help to search a graph. Journal of the ACM 40(2), 224–245 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Makedon, F.S., Sudborough, I.H.: On minimizing width in linear layouts. Discrete Appl. Math. 23, 243–265 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Megiddo, N., Hakimi, S., Garey, M., Johnson, D., Papadimitriou, C.: The complexity of searching a graph. Journal of the ACM 35(1), 18–44 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Parsons, T.: Pursuit-evasion in a graph. In: Theory and Applications of Graphs. Lecture Notes in Mathematics, pp. 426–441. Springer, Heidelberg (1976)Google Scholar
  20. 20.
    Skodinis, K.: Computing optimal linear layouts of trees in linear time. In: Paterson, M. (ed.) ESA 2000. LNCS, vol. 1879, pp. 403–414. Springer, Heidelberg (2000) (Also to appear in SIAM Journal on Computing)Google Scholar
  21. 21.
    Yang, B., Dyer, D., Alspach, B.: Sweeping Graphs with Large Clique Number (Extended Abstract). In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 908–920. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Lélia Blin
    • 1
  • Pierre Fraigniaud
    • 2
  • Nicolas Nisse
    • 2
  • Sandrine Vial
    • 1
  1. 1.IBISCUniversity of EvryEvryFrance
  2. 2.LRI, CNRS and Université Paris-SudOrsayFrance

Personalised recommendations