Theoretical Basis of Novelty Detection in Time Series Using Negative Selection Algorithms

  • Rafał Pasek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4163)


Theoretical basis of Novelty Detection in Time Series and its relationships with State Space Reconstruction are discussed. It is shown that the methods for estimation of optimal state-space reconstruction parameters may be used for the estimation of immunological novelty detection system’s parameters. This is illustrated with a V-detector system detecting novelties in Mackey-Glass time series.


Anomaly Detection Window Length Artificial Immune System Novelty Detection Chaotic Time Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Markou, M., Singh, S.: Novelty Detection: A Review. Signal Processing 83(12), 2481–2497 (2003)zbMATHCrossRefGoogle Scholar
  2. 2.
    Kim, J., Bentley, P.: An Evaluation of Negative Selection in an Artificial Immune System for Network Intrusion Detection. In: GECCO 2001, pp. 1330–1337 (2001)Google Scholar
  3. 3.
    Balthrop, J., Forrest, S., Glickman, M.R.: Revisiting LISYS: Parameters and Normal Behavior. In: CEC 2002, pp. 1045–1050 (2002)Google Scholar
  4. 4.
    Esponda, F., Forrest, S., Helman, P.: A Formal Framework for Positive and Negative Detection Schemes. IEEE Trans. Syst., Man Cybernet. 34, 357–373 (2004)CrossRefGoogle Scholar
  5. 5.
    Esponda, F., Forrest, S., Helman, P.: The Crossover Closure and Partial Match Detection. In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 249–260. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    González, F.: A Study of Artificial Immune Systems Applied to Anomaly Detection. Ph.D thesis, USA. The University of Memphis (2003)Google Scholar
  7. 7.
    Ji, Z., Dasgupta, D.: Real-valued negative selection algorithm with variable-sized detectors. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 287–298. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Ji, Z., Dasgupta, D.: Augmented Negative Selection Algorithm with Variable-Coverage Detectors. In: CEC 2004, pp. 1081–1088 (2004)Google Scholar
  9. 9.
    Forrest, S., Perelson, A., Allen, L., Cherukuri, R.: Self-Nonself Discrimination in a Computer. In: IEEE Symposium on Research in Security and Privacy (1994)Google Scholar
  10. 10.
    Dasgupta, D., Forrest, S.: Novelty Detection in Time Series Data using Ideas from Immunology. In: 5th International Conference on Intelligent Systems (1996)Google Scholar
  11. 11.
    Taylor, D., Corne, D.W.: An Investigation of the Negative Selection Algorithm for Fault Detection in Refrigeration Systems. LNCS, vol. 278 (2003)Google Scholar
  12. 12.
    Dasgupta, D., Forrest, S.: Tool Breakage Detection in Milling Operations using a Negative-Selection Algorithm. Tech. rep. CS95-5, Computer Science, University of New Mexico (1995)Google Scholar
  13. 13.
    Hofmeyr, S.A.: An Interpretative Introduction to the Immune System. Tech. rep. University of New Mexico (1999)Google Scholar
  14. 14.
    Dasgupta, D., Gonzalez, F.: An Immunity-Based Technique to Characterize Intrusions in Computer Networks. IEEE Trans. Evol. Comput. 6, 1081–1088 (2002)Google Scholar
  15. 15.
    González, F., Dasgupta, D.: An Immunogenetic Technique to Detect Anomalies in Network Traffic. In: GECCO 2002 (2002)Google Scholar
  16. 16.
    Dasgupta, D., Forrest, S.: Artificial Immune Systems in Industrial Applications. In: IPMM 1999 (1999)Google Scholar
  17. 17.
    Hart, E., Timmis, J.I.: Application areas of AIS: The past, the present and the future. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 483–497. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Ji, Z., Dasgupta, D.: Estimating the Detector Coverage in a Negative Selection. In: GECCO 2005 (2005)Google Scholar
  19. 19.
    Dasgupta, D., Krishnakumar, K.T., Wong, D., Berry, M.: Negative selection algorithm for aircraft fault detection. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 1–13. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Kugiumtzis, D.: State Space Reconstruction Parameters in the Analysis of Chaotic Time Series - the Role of the Time Window Length. Physica D 95, 13–28 (1996)zbMATHCrossRefGoogle Scholar
  21. 21.
    Small, M., Tse, C.K.: Optimal embedding parameters: A modeling paradigm. Physica D 194, 283–296 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Robinson, J.C.: A topological delay embedding theorem for infinite-dimensional dynamical systems. Nonlinearity 18(5), 2135–2143 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Packard, N.H., Crutchfield, J.P., Farmer, J.D., Shaw, R.S.: Geometry from a time series. Phys. Rev. Let. 45, 712–716 (1980)CrossRefGoogle Scholar
  24. 24.
    Gibson, J.F., Farmer, J.D., Casdagli, M., Eubank, S.: An analytic approach to practical state space reconstruction. Physica D 57 (1992)Google Scholar
  25. 25.
    Sauer, T., Yorke, J.A., Casdagli, M.: Embedology. Journal of Stat. Phys. 65, 579–616 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Ruelle, D., Takens, F.: On the nature of turbulence. Comm. Math. Phys. 20, 167–192 (1971)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Broomhead, D.S., King, G.P.: Extracting qualitative dynamics from experimental data. Physica D 20, 217–236 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Rosenstein, M.T., Collins, J.J., De Luca, C.J.: Reconstruction expansion as a geometry-based framework for choosing proper delay times. Physica D 73, 82–98 (1993)CrossRefGoogle Scholar
  29. 29.
    Tsonis, A.A.: Chaos: From Theory to Applications. Plenum Press, New York (1992)Google Scholar
  30. 30.
    Takens, F.: Detecting strange attractors in turbulence, Dynamical Systems and Turbulence. Lecturer Notes in Mathematics, vol. 898, pp. 366–381 (1981)Google Scholar
  31. 31.
    Mane, R.: On the dimension of the compact invariant sets of certain nonlinear maps. In: Dynamical systems and turbulence, Warwick (1981)Google Scholar
  32. 32.
    Bünner, M.J., Ciofini, M., Giaquinta, A., Hegger, R., Kantz, H., Meucci, R., Politi, A.: Recons-truction of systems with delayed feedback: I. Theory. EPJ D 10(2) (2000)Google Scholar
  33. 33.
    Sharif, S.S., Taylor, J.H.: Chaos in Nonlinear Dynamical Systems. Interim Report on Vibration Mechanisms of the EH101 Helicopter (2001)Google Scholar
  34. 34.
    Cao, L.: Practical method for determining the minimum embedding dimension of a scalar time series. Phys. Rev. A 45, 3403–3411 (1992)CrossRefGoogle Scholar
  35. 35.
    Ataei, M., Lohmann, B., Khaki-Sedigh, A., Lucas, C.: Model based method for estimating an attractor dimension from uni/multivariate chaotic time series with application to Bremen climatic dynamics. Chaos, Solutons and Fractals 19, 1131–1139 (2004)zbMATHCrossRefGoogle Scholar
  36. 36.
    Froehling, H., Crutchfield, J.P., Farmer, D., Packard, N.H., Show, R.: On determining the dimension of chaotic flows. Physica D 3(3), 605–617 (1981)CrossRefMathSciNetzbMATHGoogle Scholar
  37. 37.
    Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys.Rev. A 45, 3403–3411 (1992)CrossRefGoogle Scholar
  38. 38.
    Kennel, M.B., Abarbanel, H.D.I.: False neighbors and false strands: A reliable minimum embedding dimension algorithm. Tech.rep., Institute for Nonlinear Science and Department of Physics, University of California, San Diego, Mail Code 0402, La Jolla, CA 92093-0402 Google Scholar
  39. 39.
    Liebert, W., Pawelzik, K., Schuster, H.G.: Optimal embeddings of chaotic attractors from topological considerations. Europhys. Lett. 14, 521 (1991)Google Scholar
  40. 40.
    Aleksic, Z.: Estimating the embedding dimension. Physica D 52 (1991)Google Scholar
  41. 41.
    Buzug, T., Pfister, G.: Comparison of algorithms calculating optimal embedding parameters for delay time coordinates. Physica D 58, 127–137 (1992)CrossRefGoogle Scholar
  42. 42.
    Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Phys. D (1983)Google Scholar
  43. 43.
    Kugiumtzis, D., Christophersen, N.: State Space Reconstruction: Method of Delays vs Singular Spectrum Approach. Report No 236, Dept. of Informatics, Univ. of Oslo (1997)Google Scholar
  44. 44.
    Casdagli, M., Eubank, S., Farmer, J.D., Gibson, J.: State space reconstruction in the presence of noise. Physica D 51, 52–98 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Mackey, M.C., Glass, L.: Oscillations and chaos in physiological control systems. Science 197, 287–289 (1977)CrossRefGoogle Scholar
  46. 46.
    Lorenz, E.N.: Deterministic non-periodic flow. J. of Atmospheric Science 357 (1963)Google Scholar
  47. 47.
    Stibor, T., Timmis, J.I., Eckert, C.: A comparative study of real-valued negative selection to statistical anomaly detection techniques. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 262–275. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  48. 48.
    Ebner, M., Breunig, H.G., Albert, J.: On the Use of Negative Selection in an Artificial Immune System. In: GECCO 2002 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Rafał Pasek
    • 1
  1. 1.Wrocław University of TechnologyWrocławPoland

Personalised recommendations