Modeling Influenza Viral Dynamics in Tissue

  • Catherine Beauchemin
  • Stephanie Forrest
  • Frederick T. Koster
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4163)


Predicting the virulence of new Influenza strains is an important problem. The solution to this problem will likely require a combination of in vitro and in silico tools that are used iteratively. We describe the agent-based modeling component of this program and report preliminary results from both the in vitro and in silico experiments.


Clara Cell Viral Dynamics Viral Replication Cycle Epithelial Cell Monolayer Client Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    World Health Organization: Influenza. Fact Sheet 211, World Health Organization (Revised March 2003), Available Online at:
  2. 2.
    Webster, R.G., Peiris, M., Chen, H., Guan, Y.: H5N1 outbreaks and enzootic influenza. Emerg. Infect. Dis. 12(1), 3–8 (2006)Google Scholar
  3. 3.
    Tumpey, T.M., Basler, C.F., Aguilar, P.V., Zeng, H., Solórzano, A., Swayne, D.E., Cox, N.J., Katz, J.M., Taubenberger, J.K., Palese, P., García-Sastre, A.: Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310(5745), 77–80 (2005)CrossRefGoogle Scholar
  4. 4.
    Tumpey, T.M., García-Sastre, A., Taubenberger, J.K., Palese, P., Swayne, D.E., Pantin-Jackwood, M.J., Schultz-Cherry, S., Solórzano, A., Van Rooijen, N., Katz, J.M., Basler, C.F.: Pathogenicity of influenza viruses with genes from the 1918 pandemic virus: Functional roles of alveolar macrophages and neutrophils in limiting virus replication and mortality in mice. J. Virol. 79(23), 14933–14944 (2005)CrossRefGoogle Scholar
  5. 5.
    Belz, G.T., Wodarz, D., Diaz, G., Nowak, M.A., Doherty, P.C.: Compromized influenza virus-specific CD8 + -T-cell memory in CD4 + -T-cell-deficient mice. J. Virol. 76(23), 12388–12393 (2002)CrossRefGoogle Scholar
  6. 6.
    Fritz, R.S., Hayden, F.G., Calfee, D.P., Cass, L.M.R., Peng, A.W., Alvord, W.G., Strober, W., Straus, S.E.: Nasal cytokine and chemokine response in experimental influenza A virus infection: Results of a placebo-controlled trial of intravenous zanamivir treatment. J. Infect. Dis. 180, 586–593 (1999)CrossRefGoogle Scholar
  7. 7.
    Kilbourne, E.D.: Influenza. Plenum Medical Book Company, New York (1987)Google Scholar
  8. 8.
    Larson, E., Dominik, J., Rowberg, A., Higbee, G.: Influenza virus population dynamics in the respiratory tract of experimentally infected mice. Infect. Immun. 13(2), 438–447 (1976)Google Scholar
  9. 9.
    Bocharov, G.A., Romanyukha, A.A.: Mathematical model of antiviral immune response III. Influenza A virus infection. J. Theor. Biol. 167(4), 323–360 (1994)CrossRefGoogle Scholar
  10. 10.
    Baccam, P., Beauchemin, C., Macken, C.A., Hayden, F.G., Perelson, A.S.: Kinetics of influenza A virus infection in humans. J. Virol. 80(15) (2006)Google Scholar
  11. 11.
    Beauchemin, C., Samuel, J., Tuszynski, J.: A simple cellular automaton model for influenza A viral infections. J. Theor. Biol. 232(2), 223–234 (2005) (Draft available on arXiv:q-bio.CB/0402012)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Celada, F., Seiden, P.E.: A computer model of cellular interactions in the immune system. Immunol. Today 13(2), 56–62 (1992)CrossRefGoogle Scholar
  13. 13.
    Efroni, S., Harel, D., Cohen, I.R.: Toward rigorous comprehension of biological complexity: Modeling, execution, and visualization of thymic T-cell maturation. Genome Res. 13(11), 2485–2497 (2003)CrossRefGoogle Scholar
  14. 14.
    Meier-Schellersheim, M., Mack, G.: SIMMUNE, a tool for simulating and analyzing immune system behavior. arXiv:cs.MA/9903017 (1999)Google Scholar
  15. 15.
    Polys, N.F., Bowman, D.A., North, C., Laubenbacher, R.C., Duca, K.: PathSim visualizer: An Information-Rich Virtual Environment framework for systems biology. In: Brutzman, D.P., Chittaro, L., Puk, R. (eds.) Proceeding of the Ninth International Conference on 3D Web Technology, Web3D 2004, Monterey, California, USA, April 5–8, 2004, pp. 7–14. ACM Press, New York (2004)CrossRefGoogle Scholar
  16. 16.
    Warrender, C.E.: CyCells (2005), Computer Software distributed on SourceForge under the GNU GPL at:
  17. 17.
    Segovia-Juarez, J.L., Ganguli, S., Kirschner, D.: Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model. J. Theor. Biol. 231(3), 357–376 (2004)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Warrender, C., Forrest, S., Koster, F.: Modeling intercellular interactions in early Mycobaterium infection. B. Math. Biol. (in press)Google Scholar
  19. 19.
    Edelstein-Keshet, L., Spiros, A.: Exploring the formation of Alzheimer’s disease senile plaques in silico. J. Theor. Biol. 216(3), 301–326 (2002)CrossRefGoogle Scholar
  20. 20.
    Abbott, R.G., Forrest, S., Pienta, K.J.: Simulating the hallmarks of cancer. Artif. Life (in press, 2006)Google Scholar
  21. 21.
    Gerety, R., Spencer, S.L., Pienta, K.J., Forrest, S.: Modeling somatic evolution in tumorigenesis. PLoS Comput. Biol. (in review, 2006)Google Scholar
  22. 22.
    González-García, I., Solé, R.V., Costa, J.: Metapopulation dynamics and spatial heterogeneity in cancer. PNAS 99(20), 13085–13089 (2002)CrossRefGoogle Scholar
  23. 23.
    Maley, C.C., Forrest, S.: Exploring the relationship between neutral and selective mutations in cancer. Artif. Life 6(4), 325–345 (2000)CrossRefGoogle Scholar
  24. 24.
    Maley, C.C., Forrest, S.: Modeling the role of neutral and selective mutations in cancer. In: Bedau, M.A., McCaskill, J.S., Packard, N.H., Rasmussen, S. (eds.) Artificial Life VII: Proceedings of the 7th International Conference on Artificial Life, pp. 395–404. MIT Press, Cambridge (2000)Google Scholar
  25. 25.
    Maley, C.C., Reid, B.J., Forrest, S.: Cancer prevention strategies that address the evolutionary dynamics of neoplastic cells: Simulating benign cell boosters and selection for chemosensitivity. Cancer Epidem. Biomar. 13(8), 1375–1384 (2004)Google Scholar
  26. 26.
    Strain, M.C., Richman, D.D., Wong, J.K., Levine, H.: Spatiotemporal dynamics of HIV propagation. J. Theor. Biol. 218(1), 85–96 (2002)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Zorzenon dos Santos, R.M., Coutinho, S.: Dynamics of HIV infection: A cellular automata approach. Phys. Rev. Lett. 87(16) (2001)Google Scholar
  28. 28.
    Shinya, K., Ebina, M., Yamada, S., Ono, M., Kasai, N., Kawaoka, Y.: Influenza virus receptors in the human airway. Nature 440(7083), 435–436 (2006)CrossRefGoogle Scholar
  29. 29.
    van Riel, D., Munster, V.J., de Wit, E., Rimmelzwaan, G.F., Fouchier, R.A., Osterhaus, A.D., Kuiken, T.: H5N1 virus attachment to lower respiratory tract. Science 312(5772), 399 (2006); Originally published in Science Express on March 23, 2006Google Scholar
  30. 30.
    Östreich, T., Bitterberg, T., et al.: Transcode (2001). Computer software distributed under the GNU GPL at:
  31. 31.
    Beauchemin, C.: MASyV: A Multi-Agent System Visualization package (2003) Computer software distributed on SourceForge under the GNU GPL at:
  32. 32.
    Beauchemin, C.: Probing the effects of the well-mixed assumption on viral infection dynamics. J. Theor. Biol. (in press, 2006); Draft available on arXiv:q-bio.CB/0505043Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Catherine Beauchemin
    • 1
  • Stephanie Forrest
    • 2
  • Frederick T. Koster
    • 3
  1. 1.Adaptive Computation Lab.University of New MexicoAlbuquerque
  2. 2.Dept. of Computer ScienceUniversity of New MexicoAlbuquerque
  3. 3.Lovelace Respiratory Research InstituteAlbuquerque

Personalised recommendations