Advertisement

A Symbolic-Numerical Algorithm for Solving the Eigenvalue Problem for a Hydrogen Atom in Magnetic Field

  • Alexander Gusev
  • Vladimir Gerdt
  • Michail Kaschiev
  • Vitaly Rostovtsev
  • Valentin Samoylov
  • Tatyana Tupikova
  • Sergue Vinitsky
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4194)

Abstract

The boundary-value problem in spherical coordinates for the Shrödinger equation describing a hydrogen-like atom in a strong magnetic field is reduced to the problem for a set of radial equations in the framework of the Kantorovich method. The effective potentials of these equations are given by integrals over the angular variable between the oblate angular spheroidal functions depending on the radial variable as a parameter and their derivatives with respect to the parameter. A symbolic-numerical algorithm for evaluating the oblate spheroidal functions and corresponding eigenvalues which depend on the parameter, their derivatives with respect to the parameter and matrix elements is presented. The efficiency and accuracy of the algorithm and of the numerical scheme derived are confirmed by computations of eigenenergies and eigenfunctions for the low-excited states of a hydrogen atom in the uniform magnetic field.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dimova, M.G., Kaschiev, M.S., Vinitsky, S.I.: The Kantorovich method for high-accuracy calculations of a hydrogen atom in a strong magnetic field: low-lying excited states. Journal of Physics B: At. Mol. Phys. 38, 2337–2352 (2005)CrossRefGoogle Scholar
  2. 2.
    Chuluunbaatar, O., et al.: On an effective approximation of the Kantorovich method for calculations of a hydrogen atom in a strong magnetic field. In: Proc. SPIE, vol. 6165, pp. 67–83 (2006)Google Scholar
  3. 3.
    Abramovits, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965)Google Scholar
  4. 4.
  5. 5.
  6. 6.
  7. 7.
    Kantorovich, L.V., Krylov, V.I.: Approximate Methods of Higher Analysis. Wiley, New York (1964)Google Scholar
  8. 8.
    Oguchi, T.: Eigenvalues of spheroidal wave functions and their branch points for complex values of propagation constants. Radio Sci. 5, 1207–1214 (1970)CrossRefGoogle Scholar
  9. 9.
    Skorokhodov, S.L., Khristoforov, D.V.: Calculation of the branch points of the eigenfunctions corresponding to wave spheroidal functions. Journal of Computational Mathematics and Mathematical Physics 46, 1132–1146 (2006)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Damburg, R.J., Propin, R.K.: On asymptotic expansions of electronic terms of the molecular ion H 2  + . J. Phys. B: At. Mol. Phys. 1, 681–691 (1968)CrossRefGoogle Scholar
  11. 11.
    Gusev, A.A., et al.: Symbolic-numerical algorithm for solving the time-dependent Shroedinger equation by split-operator method. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 245–258. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Bouwmeester, D., Ekert, A., Zeilinger, A. (eds.): The Physics of Quantum Information. Springer, Heidelberg (2000)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Alexander Gusev
    • 1
  • Vladimir Gerdt
    • 1
  • Michail Kaschiev
    • 2
  • Vitaly Rostovtsev
    • 1
  • Valentin Samoylov
    • 1
  • Tatyana Tupikova
    • 1
  • Sergue Vinitsky
    • 1
  1. 1.Joint Institute for Nuclear ResearchDubna, Moscow RegionRussia
  2. 2.Institute of Mathematics and InformaticsBASSofiaBulgaria

Personalised recommendations