A Symbolic-Numeric Approach for Solving the Eigenvalue Problem for the One-Dimensional Schrödinger Equation

  • I. N. Belyaeva
  • N. A. Chekanov
  • A. A. Gusev
  • V. A. Rostovtsev
  • S. I. Vinitsky
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4194)


A general scheme of a symbolic-numeric approach for solving the eigenvalue problem for the one-dimensional Shrödinger equation is presented. The corresponding algorithm of the developed program EWA using a conventional pseudocode is described too. With the help of this program the energy spectra and the wave functions for some Schrödinger operators such as quartic, sextic, octic anharmonic oscillators including the quartic oscillator with double well are calculated.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Landau, L.D., Lifshits, E.M.: Quantum Mechanics: Non-Relativistic Theory. Pergamon Press, New York (1977)Google Scholar
  2. 2.
    Wilkinson, J.H., Reinsch, C.: Handbook for Automatic Computation. Linear Algebra, vol. 2. Springer, New York (1971)zbMATHGoogle Scholar
  3. 3.
    Banerjee, K.: General anharmonic oscillators. Proc. Roy. Soc. London, A 364, 265–275 (1978)CrossRefGoogle Scholar
  4. 4.
    Maslov, V.P., Fedoryuk, M.V.: Kvaziklassicheskie pribligeniya dlya uravnenii kvantovoi mekhaniki. Nayka, Moskva (1976)Google Scholar
  5. 5.
    Puzynin, I.V., Amirkhanov, I.V., et al.: Continuous Analogue of Newton’s Method for the Numerical Investigation of Some Nonlinear Quantum - Field Models. PEPAN 30, 210–265 (1999)Google Scholar
  6. 6.
    Flugge, S.: Practical Quantum Mechanics. Springer, Heidelberg (1971)Google Scholar
  7. 7.
    Birkhoff, G.D.: Dynamical Systems. A.M.S. Colloquium Publications. New York (1927)Google Scholar
  8. 8.
    Gustavson, F.G.: On construction of formal integral of a Hamiltonian system near an equilibrium point. Astronom. J. 71, 670–686 (1966)CrossRefGoogle Scholar
  9. 9.
    Swimm, R.T., Delos: Semiclassical calculation of vibrational energy levels for nonseparable systems using Birkhoff–Gustavson normal form. J. Chem. Phys. 71, 1706 (1979)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Ali, M.K.: The quantum normal form and its equivalents. J. Math. Phys. 26, 25–65 (1985)CrossRefGoogle Scholar
  11. 11.
    Chekanov, N.A.: Kvantovanie normalnoi formy Birkhoff–Gustavson. Jadernaya Fizika 50, 344–346 (1985)Google Scholar
  12. 12.
    Abrashkevich, A.G., Abrashkevich, D.G., Kaschiev, M.S., Puzynin, I.V.: FESSDE, a program for the finite-element solution of the coupled-channel Schroedinger equation using high-order accuracy approximations. Comp. Phys. Commun. 85, 65–74 (1995)zbMATHCrossRefGoogle Scholar
  13. 13.
    Jaffe, L.G.: Large N limits as classical mechanics. Rev. Mod. Phys. 54, 407–435 (1982)CrossRefGoogle Scholar
  14. 14.
    Dineykhan, M., Efimov, G.V.: The Schroedinger equation for bound state systems in the oscillator representation. Reports of Math. Phys. 6, 287–308 (1995)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Jafarpour, M., Afshar, D.: Calculation of energy eigenvalues for the quantum anharmonic oscillator with a polynomial potential. J. Phys. A: Math. Gen. 35, 87–92 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Ivanov, I.A.: Sextic and octic anharmonic oscillator: connection between strong-coupling and weak-coupling expansions. J. Phys. A: Math. Gen. 31, 5697–5704 (1998)zbMATHCrossRefGoogle Scholar
  17. 17.
    Ivanov, I.A.: Link between the strong-coupling and weak-coupling asymptotic perturbation expansions for the quartic anharmonic oscillator. J. Phys. A: Math. Gen. 31, 6995–7003 (1998)zbMATHCrossRefGoogle Scholar
  18. 18.
    Liu, X.S., Su, L.W., Ding, P.Z.: Intern. J. Quantum Chem. 87, 1–11 (2002)Google Scholar
  19. 19.
    Ince, E.L.: Ordinary Differential Equations. Dover Pubns, New York (1956)Google Scholar
  20. 20.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1968)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • I. N. Belyaeva
    • 1
  • N. A. Chekanov
    • 1
  • A. A. Gusev
    • 2
  • V. A. Rostovtsev
    • 2
  • S. I. Vinitsky
    • 2
  1. 1.Belgorod State UniversityBelgorodRussia
  2. 2.Joint Institute for Nuclear ResearchDubna, Moscow RegionRussia

Personalised recommendations