Advertisement

A Symbolic-Numeric Approach to Tube Modeling in CAD Systems

  • Gerrit Sobottka
  • Andreas Weber
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4194)

Abstract

In this note we present a symbolic-numeric method to the problem of tube modeling in CAD systems. Our approach is based on the Kirchhoff kinetic analogy which allows us to find analytic solutions to the static Kirchhoff equations for rods under given boundary conditions.

Keywords

Kirchhoff rod boundary value problems automatic differentiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Liu, S., Weber, A.: A symbolic-numeric method for solving boundary value problems of Kirchhoff rods. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 387–398. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Grégoire, M., Schömer, E.: Interactive simulation of one-dimensional flexible parts. In: SPM 2006: Proceedings of the 2006 ACM symposium on Solid and physical modeling, Cardiff, Wales, United Kingdom, pp. 95–103. ACM Press, New York (2006)CrossRefGoogle Scholar
  3. 3.
    Healey, T.J., Mehta, P.G.: Straightforward computation of spatial equilibria of geometrically exact Cosserat rods (2003), http://tam.cornell.edu/Healey.html
  4. 4.
    Simo, J.C., Vu-Quoc, L.: On the dynamics in space of rods undergoing large motions – a geometrically exact approach. Computer Methods in Applied Mechanics and Engineering 66, 125–161 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Henderson, M.E., Neukirch, S.: Classification of the spatial equilibria of the clamped elastica: numerical continuation of the solution set. International Journal of Bifurcation and Chaos 14, 1223–1239 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Nizette, M., Goriely, A.: Towards a classification of Euler-Kirchhoff filaments. Journal of Mathematical Physics 40, 2830–2866 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hopkins, T.R., Phillips, C.: Numerical Methods in Practice – A Guide to the NAG Library. Addison-Wesley, Reading (1988)Google Scholar
  8. 8.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C++, 2nd edn. Cambridge University Press, Cambridge (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gerrit Sobottka
    • 1
  • Andreas Weber
    • 1
  1. 1.Institut für Informatik IIUniversität BonnBonnGermany

Personalised recommendations