Adaptive Web Usage Profiling

  • Bhushan Shankar Suryavanshi
  • Nematollaah Shiri
  • Sudhir P. Mudur
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4198)


Web usage models and profiles capture significant interests and trends from past accesses. They are used to improve user experience, say through recommendation of pages, pre-fetching of pages, etc. While browsing behavior changes dynamically over time, many web usage modeling techniques are static due to prohibitive model compilation times and also lack of fast incremental update mechanism. However, profiles have to be maintained so that they dynamically adapt to new interests and trends, since otherwise their use can lead to poor, irrelevant, and mis-targeted recommendations in personalization systems. We present a new profile maintenance scheme, which extends the Relational Fuzzy Subtractive Clustering (RFSC) technique and enables efficient incremental update of usage profiles. An impact factor is defined whose value can be used to decide the need for recompilation. The results from extensive experiments on a large real dataset of web logs show that the proposed maintenance technique, with considerably reduced computational costs, is almost as good as complete remodeling.


Impact Factor Cluster Center Recommender System Usage Profile Collaborative Filter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, A.: Business Intelligence from Web Usage Mining. J. of Information and Knowledge Management (JIKM) 2(4), 375–390 (2003)CrossRefGoogle Scholar
  2. 2.
    Baraglia, R., Silvestri, F.: An Online Recommender System for Large Web Sites. In: Proc. IEEE/WIC/ACM Int’l. Conference on Web Intelligence, Beijing, China (September 2004)Google Scholar
  3. 3.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)zbMATHGoogle Scholar
  4. 4.
    Breese, J., Heckerman, D., Kadie, C.: Empirical Analysis of Predictive Algorithms for Collaborative Filtering. In: Proc. of UAI 1998, pp. 43–52 (1998)Google Scholar
  5. 5.
    Can, F., Ozkarahan, E.A.: A Dynamic Cluster Maintenance System for Information Retrieval. In: Proc. 10th Annual International ACM-SIGIR Conference, pp. 123–131 (1987)Google Scholar
  6. 6.
    Charikar, M., Chekuri, C., Feder, T., Motwani, R.: Incremental clustering and dynamic information retrieval. SIAM Journal on Computing 33(6), 1417–1440 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chiu, S.L.: Fuzzy model identification based on cluster estimation. J. of Intelligent and Fuzzy Systems 2(3) (1994)Google Scholar
  8. 8.
    Cooley, R., Mobasher, B., Srivastava, J.: Data Preparation for Mining World Wide Web Browsing Patterns. J. of Knowledge and Information Systems 1, 1–27 (1999)Google Scholar
  9. 9.
    Corsini, P., Lazzerini, B., Marcelloni, F.: A New Fuzzy Relational Clustering Algorithm Based on Fuzzy C-means Algorithm. Soft Computing. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Ester, M., Kriegel, H., Sander, J., Wimmer, M., Xu, X.: Incremental Clustering for Mining in a Data Warehousing Environment. In: Proc. of VLDB 1998, pp. 323–333. Morgan Kaufmann Publishers Inc., San Francisco (1998)Google Scholar
  11. 11.
    Fu, Y., Sandhu, K., Shih, M.-Y.: A Generalization-Based Approach to Clustering of Web Usage Sessions. In: Masand, B., Spiliopoulou, M. (eds.) WebKDD 1999. LNCS (LNAI), vol. 1836, pp. 21–38. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Huang, J.Z., Ng, M.K., Ching, W.-K., Ng, J., David Wai-Lok, C.: A cube model and cluster analysis for web access sessions. In: Kohavi, R., Masand, B., Spiliopoulou, M., Srivastava, J. (eds.) WebKDD 2001. LNCS (LNAI), vol. 2356, pp. 48–67. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Hathaway, R.J., Bezdek, J.C., Davenport, J.W.: On relational data version of c-means algorithm. Pattern Recognition Letters 17, 607–612 (1996)CrossRefGoogle Scholar
  14. 14.
    Hubert, L., Arabie, P.: Comparing partitions. J. of Classification 2, 193–198 (1985)CrossRefGoogle Scholar
  15. 15.
    Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs (1988)zbMATHGoogle Scholar
  16. 16.
    Mobasher, B.: Web Usage Mining and Personalization. In: Singh, M.P. (ed.) Practical Handbook of Internet Computing. CRC Press, Boca Raton (2004)Google Scholar
  17. 17.
    Mobasher, B., Cooley, R., Srivastava, J.: Automatic personalization based on web usage mining. Comm. ACM 43(8), 142–151 (2000)CrossRefGoogle Scholar
  18. 18.
    Nasraoui, O.: World Wide Web Personalization. In: Wang, J. (ed.) Encyclopedia of Data Mining and Data Warehousing. Idea Group, USA (2005)Google Scholar
  19. 19.
    Nasraoui, O., Cardona, C., Rojas, C., Gonzalez, F.: Mining Evolving User Profiles in Noisy Web Clickstream Data with a Scalable Immune System Clustering Algorithm. In: Proc. WebKDD 2003, Washington DC (August 2003)Google Scholar
  20. 20.
    Nasraoui, O., Krishnapuram, R., Joshi, A., Kamdar, T.: Automatic Web User Profiling and Personalization using Robust Fuzzy Relational Clustering. In: E-Commerce and Intelligent Methods. Springer, Heidelberg (2002)Google Scholar
  21. 21.
    Nasraoui, O., Frigui, H., Krishnapuram, R., Joshi, A.: Extracting Web User Profiles Using Relational Competitive Fuzzy Clustering. International Journal on Artificial Intelligence Tools 9(4), 509–526 (2000)CrossRefGoogle Scholar
  22. 22.
    Nasraoui, O., Krishnapuram, R.: One Step Evolutionary Mining of Context Sensitive Associations and Web Navigation Patterns. In: Proc. SIAM conference on Data Mining, Arlington, VA, April 2002, pp. 531–547 (2002)Google Scholar
  23. 23.
    Pal, K., Pal, N., Keller, J.M., Bezdek, J.: Relational mountain (density) clustering method and web log analysis. Int’l. J. of Intelligent Systems 20(3), 375–392 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Pennock, D.M., Horvitz, E., Lawrence, S., Giles, C.L.: Collaborative filtering by personality diagnosis: A hybrid memory- and model-based approach. In: Proc. of UAI 2000, Stanford, CA, pp. 473–480 (2000)Google Scholar
  25. 25.
    Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Analysis of recommender algorithms for e-commerce. In: Proc. 2nd ACM E-commerce Conference, Minnesota, USA (2000)Google Scholar
  26. 26.
    Shahabi, C., Banaei-Kashani, F.: A Framework for Efficient and Anonymous Web Usage Mining Based on Client-Side Tracking. In: Kohavi, R., Masand, B., Spiliopoulou, M., Srivastava, J. (eds.) WebKDD 2001. LNCS (LNAI), vol. 2356, p. 113. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  27. 27.
    Suryavanshi, B.S., Shiri, N., Mudur, S.P.: An Efficient Technique for Mining Usage Profiles using Relational Fuzzy Subtractive Clustering. In: Proc. of IEEE Int’l. Workshop on Challenges in Web Information Retrieval and Integration (WIRI 2005), Tokyo, Japan, April 8-9 (2005)Google Scholar
  28. 28.
    Suryavanshi, B.S., Shiri, N., Mudur, S.P.: A Fuzzy Hybrid Collaborative Filtering Technique for Web Personalization. In: Proc. of 3rd Workshop on Intelligent Techniques for Web Personalization (ITWP 2005), Edinburgh, Scotland (August 2005)Google Scholar
  29. 29.
    Suryavanshi, B.S., Shiri, N., Mudur, S.P.: Incremental Relational Fuzzy Subtractive Clustering for Dynamic Web Usage Profiling. In: Nasraoui, O., Zaïane, O.R., Spiliopoulou, M., Mobasher, B., Masand, B., Yu, P.S. (eds.) WebKDD 2005. LNCS (LNAI), vol. 4198. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  30. 30.
    Tasoulis, D., Vrahatis, M.: Unsupervised Clustering on Dynamic Databases. Pattern Recognition Letters (to appear, 2005)Google Scholar
  31. 31.
    Van Rijsbergen, C.J.: Information Retrieval, 2nd edn. Butterworths, London (1979)Google Scholar
  32. 32.
    Xie, X.L., Beni, G.: A validity measure for fuzzy clustering. IEEE Trans. on PAMI 13(8), 841–847 (1991)Google Scholar
  33. 33.
    Xie, Y., Phoha, V.V.: Web User Clustering from Access Log Using Belief Function. In: Proc. 1st International Conference on Knowledge Capture (K-CAP 2001), pp. 202–208. ACM Press, New York (2001)CrossRefGoogle Scholar
  34. 34.
    Yan, T.W., Jacobsen, M., Garcia-Molina, H., Dayal, U.: From User Access Patterns to Dynamic Hypertext Linking. In: Proc. 5th International World Wide Web Conf. (1996)Google Scholar
  35. 35.
    Yager, R.R., Filev, D.P.: Approximate clustering via the mountain method. IEEE Transaction on System Man Cybern. 24(8), 1279–1284 (1994)CrossRefGoogle Scholar
  36. 36.
    Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering method for very large databases. In: Proc. 1996 ACM SIGMOD Int. Conf. Management of Data, Montreal, Canada, pp. 103–114 (June 1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Bhushan Shankar Suryavanshi
    • 1
  • Nematollaah Shiri
    • 1
  • Sudhir P. Mudur
    • 1
  1. 1.Dept. of Computer Science and Software EngineeringConcordia UniversityMontreal, QuebecCanada

Personalised recommendations