Wavelet Analysis Based Blind Watermarking for 3-D Surface Meshes

  • Min-Su Kim
  • Jae-Won Cho
  • Rémy Prost
  • Ho-Youl Jung
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4283)


As most previous wavelet analysis based 3-D mesh watermarking methods embed the watermark information into wavelet coefficients arranged in a certain order, they have not been used as blind schemes since the connectivity information must be exactly known in the watermark extraction process. In this paper, we propose a blind watermarking method based on wavelet analysis for 3-D mesh model. Two new techniques are introduced. One is to exploit the statistical features of scale coefficients on an approximation (low resolution) level for watermark embedding. Another is to extract the hidden watermark, not from the same resolution level as used in embedding process, but directly from the spatial domain. As the proposed watermark detection does not require the wavelet analysis, any pre-processing such as registration and re-sampling, is not needed. These techniques allow to detect the watermark without referring to the original meshes. In addition, the proposed are applicable directly to irregular meshes by using irregular wavelet analysis. Through simulations, we prove that our method is fairly robust against various attacks including topological ones.


Watermarking blind detection wavelet transform scaling coefficients topological attacks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cox, I., Miller, M.L., Bloom, J.A.: Digital watermarking. Morgan Kaufmann Publishers Inc., San Francisco (2002)Google Scholar
  2. 2.
    Cayre, F., Macq, B.: Data hiding on 3-d triangle meshes. IEEE Trans. Signal Processing 51, 939–949 (2003)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Zhi-qiang, Y., Ip, H.H.S., Kwok, L.F.: Robust watermarking of 3d polygonal models based on vertice scrambling. In: Computer Graphics International, pp. 254–257. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  4. 4.
    Kejariwal, A.: Watermarking. IEEE Potentials, 37–40 (October/November 2003)Google Scholar
  5. 5.
    Wong, P.H.W., Au, O.C., Yeung, Y.M.: Novel blind multiple watermarking technique for images. IEEE Trans. Circuits Syst. Video Techn. 13, 813–830 (2003)CrossRefGoogle Scholar
  6. 6.
    Craver, S., Memon, N.D., Yeo, B.L., Yeung, M.M.: Can invisible watermarks resolve rightful ownerships? In: Storage and Retrieval for Image and Video Databases (SPIE), pp. 310–321 (1997)Google Scholar
  7. 7.
    Praun, E., Hoppe, H., Finkelstein, A.: Robust mesh watermarking. In: Proceedings of the 26th annual conference on Computer graphics and interactive techniques, pp. 49–56 (1999)Google Scholar
  8. 8.
    Yin, K., Pan, Z., Shi, J., Zhang, D.: Robust mesh watermarking based on multiresolution processing. Computers and Graphics 25, 409–420 (2001)CrossRefGoogle Scholar
  9. 9.
    Kanai, S., Date, D., Kishinami, T.: Digital watermarking for 3d polygon using multiresolution wavelet decomposition. In: Proc. Sixth IFIP WG 5.2 GEO-6, Tokyo, Japan, pp. 296–307 (1998)Google Scholar
  10. 10.
    Uccheddu, F., Corsini, M., Barni, M.: Wavelet-based blind watermarking of 3d models. In: Proceedings of the 2004 multimedia and security workshop on Multimedia and security, pp. 143–154. ACM Press, New York (2004)CrossRefGoogle Scholar
  11. 11.
    Kim, M.-S., Valette, S., Jung, H.-Y., Prost, R.: Watermarking of 3D Irregular Meshes Based on Wavelet Multiresolution Analysis. In: Barni, M., Cox, I., Kalker, T., Kim, H.-J. (eds.) IWDW 2005. LNCS, vol. 3710, pp. 313–324. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Ohbuchi, R., Takahashi, S., Miyazawa, T., Mukaiyama, A.: Watermarking 3d polygonal meshes in the mesh spectral domain. In: GRIN 2001: No description on Graphics interface 2001, Toronto, Ont., Canada, pp. 9–17. Canadian Information Processing Society (2001)Google Scholar
  13. 13.
    Cotting, D., Weyrich, T., Pauly, M., Gross, M.: Robust watermarking of point-sampled geometry. In: Proceedings of International Conference on Shape Modeling and Applications 2004 (SMI 2004), pp. 233–242 (2004)Google Scholar
  14. 14.
    Ohbuchi, R., Mukaiyama, A., Takahashi, S.: Watermarking a 3d shape defined as a point set. In: Proceedings of 2004 International Conference on Cyberworlds, pp. 392–399 (2004)Google Scholar
  15. 15.
    Cho, J.W., Prost, R., Jung, H.Y.: An oblivious watermarking for 3-d polygonal meshes using distribution of vertex norms. IEEE Trans. Signal Processing (to appear) final manuscript is available at:
  16. 16.
    Lounsbery, M.: Multiresolution Analysis for Surfaces of Arbitrary Topological Type. Ph.D thesis, Dept. of Computer Science and Engineering, U. of Washington (1994)Google Scholar
  17. 17.
    Valette, S., Prost, R.: Multiresolution analysis of irregular surface meshes. IEEE Trans. Visual. Comput. Graphics 10, 113–122 (2004)CrossRefGoogle Scholar
  18. 18.
    Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface construction algorithm. In: Proceedings of the 14th annual conference on Computer graphics and interactive techniques, pp. 163–169. ACM Press, New York (1987)CrossRefGoogle Scholar
  19. 19.
    Cignoni, P., Rocchini, C., Scopigno, R.: Metro: Measuring error on simplified surfaces. Computer Graphics Forum 17, 167–174 (1998)CrossRefGoogle Scholar
  20. 20.
    Field, D.: Laplacian smoothing and delaunay triangulation. Communication and Applied Numerical Methods 4, 709–712 (1988)zbMATHCrossRefGoogle Scholar
  21. 21.
    Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: SIGGRAPH 1997, pp. 209–216. ACM Press/Addison-Wesley Publishing Co., New York (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Min-Su Kim
    • 1
    • 2
  • Jae-Won Cho
    • 1
    • 2
  • Rémy Prost
    • 1
  • Ho-Youl Jung
    • 2
  1. 1.CREATIS, INSA-Lyon, CNRS UMR 5515, INSERM U630VilleurbanneFrance
  2. 2.MSP Lab., Yeungnam Univ.Gyeongsangbuk-doKorea

Personalised recommendations