Advertisement

Universal JPEG Steganalysis in the Compressed Frequency Domain

  • Johann Barbier
  • Éric Filiol
  • Kichenakoumar Mayoura
Conference paper
  • 849 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4283)

Abstract

We present in this paper a new approach for universal JPEG steganalysis and propose studying statistics of the compressed DCT coefficients. This approach is motivated by the Avalanche Criterion of the JPEG lossless compression step. This criterion makes possible the design of detectors whose detection rates are independent of the payload. We design an universal steganalytic scheme using blocks of the JPEG file binary output stream. We compute higher order statistics over their Hamming weights and combined them with a Kullbak-Leibler distance between the probability density function of these weights and a benchmark one. We evaluate the universality of our detector through its capacity to efficiently detect the use of a new algorithm not used during the training step. To that goal, we examinate training sets produced by Outguess, F5 and JPhide-and-Seek. The experimental results we obtained show that our scheme is able to detect the use of new algorithms with high detection rate (≈90%) even with very low embedding rates (<10− − 5).

Keywords

universal steganalysis JPEG Kullbak-Leibler distance Fisher discriminant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Provos, N.: Defending against statistical steganalysis. In: 10th USENIX Security Symposium (2001)Google Scholar
  2. 2.
    Westfeld, A.: F5-a steganographic algorithm. In: [21], pp. 289–302Google Scholar
  3. 3.
    Latham, A.: Steganography: JPHIDE and JPSEEK (1999), http://linux01.gwdg.de/~alatham/stego.html
  4. 4.
    Avicibaş, I., Memon, N., Sankur, B.: Steganalysis based on image quality metrics. In: Proc. SPIE, Security and Watermarking of Multimedia Contents III, vol. 4314, pp. 523–531 (2001)Google Scholar
  5. 5.
    Farid, H.: Detecting hidden messages using higher-order statistical models. In: ICIP (2), pp. 905–908 (2002)Google Scholar
  6. 6.
    Lyu, S., Farid, H.: Detecting hidden messages using higher-order statistics and support vector machines. In: [20], pp. 340–354Google Scholar
  7. 7.
    Lyu, S., Farid, H.: Steganalysis using color wavelet statistics and one-class support vector machines. In: Proc. SPIE, Security and Watermarking of Multimedia Contents VI (2004)Google Scholar
  8. 8.
    Lyu, S., Farid, H.: Steganalysis using higher-order image statistics. IEEE Transactions on Information Forensics and Security (1) (2006)Google Scholar
  9. 9.
    Fridrich, J.J., Goljan, M., Hogea, D.: Steganalysis of jpeg images: Breaking the f5 algorithm. In: [20], pp. 310–323Google Scholar
  10. 10.
    Fridrich, J., Goljan, M., Hogea, D.: New methodology for breaking steganographic techniques for jpegs. In: Proc. SPIE, Security and Watermarking of Multimedia Contents V, pp. 143–155 (2003)Google Scholar
  11. 11.
    Fridrich, J.J.: Feature-based steganalysis for jpeg images and its implications for future design of steganographic schemes. In: [22], pp. 67–81Google Scholar
  12. 12.
    Fridrich, J., Pevny, T.: Multiclass blind steganalysis for jpeg images. In: Proc. SPIE, Security and Watermarking of Multimedia Contents VIII (2006)Google Scholar
  13. 13.
    Harmsen, J.J., Pearlman, W.A.: Kernel fisher discriminant for steganalysis of jpeg hiding methods. In: ACM Multimedia and Security (2005)Google Scholar
  14. 14.
    Lin, G.S., Yeh, C.H., Kuo, C.C.J.: Data hiding domain classification for blind image steganalysis. In: ICME, pp. 907–910 (2004)Google Scholar
  15. 15.
    Feistel, H.: Cryptography and computer privacy. Scientific American 228(5), 15–23 (1973)CrossRefGoogle Scholar
  16. 16.
    Saporta, G.: Probabilité, analyse des données et statistiques (in french). Technip (1990)Google Scholar
  17. 17.
    Brown, C.W., Shepherd, B.J.: Graphics File Formats, reference and guide. Manning (1995)Google Scholar
  18. 18.
    Kalker, T., Cox, I., Ro, Y.M. (eds.): IWDW 2003. LNCS, vol. 2939. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  19. 19.
    Chandramouli, R., Kharrazi, M., Memon, N.D.: Image steganography and steganalysis: Concepts and practice. In: [18], pp. 35–49Google Scholar
  20. 20.
    Petitcolas, F.A.P. (ed.): IH 2002. LNCS, vol. 2578. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  21. 21.
    Moskowitz, I.S. (ed.): IH 2001. LNCS, vol. 2137. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  22. 22.
    Fridrich, J. (ed.): IH 2004. LNCS, vol. 3200. Springer, Heidelberg (2004)Google Scholar
  23. 23.
    Simmons, G.J.: The prisoners’ problem and the subliminal channel. In: CRYPTO, pp. 51–67 (1983)Google Scholar
  24. 24.
    Wallace, G.K.: The jpeg still picture compression standard. Commun. ACM 34(4), 30–44 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Johann Barbier
    • 1
    • 2
  • Éric Filiol
    • 1
  • Kichenakoumar Mayoura
    • 1
  1. 1.Laboratoire de Virologie et CryptologieÉcole Supérieure et d’Application des TransmissionsRennes CedexFrance
  2. 2.Département de Cryptologie, La Roche Marguerite, BP 57419Centre d’Électronique de l’ARmementBruz CedexFrance

Personalised recommendations