Advertisement

Efficient Short Signcryption Scheme with Public Verifiability

  • Changshe Ma
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4318)

Abstract

Signcryption is such a public key cryptographic primitive that simultaneously provides the functionality of signature and encryption within a single logic step. Despite the flurry of recent results on signcryption, there are no signcryption schemes which possess both tight security and short expansion. This paper presented a short signcryption scheme to achieve both above merits. Thanks to q-strong Diffie-Hellman problem and parings, our scheme is quite efficient and security: the signcryption operation has almost the same cost as an El Gamal encryption while the reverse operation only requires one pairing evaluation and two exponentiations, the ciphertext expansion is about 260 bits which is much smaller than that of all previously proposed schemes, and the security of our scheme is tightly related to q-Strong Diffie-Hellman problem in the random oracle model.

Keywords

Signcryption tight reduction provable security 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    An, J.-H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting: security prooofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Bao, F., Deng, R.-H.: A Signcryption Scheme with Signature Directly Verifiable by Public Key. In: Imai, H., Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 55–59. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Lymn, B., Shacham, H.: Short signatures from the Weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Barreto, P.-S.-L.-M., Kim, H.-Y.: Fast hashing onto elliptic curves over fields of characteristic 3 (2001), eprint available at: http://eprint.iacr.org/2001/098/
  6. 6.
    Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Proc. of the 1st ACM Conference on Computer and Communications Security, pp. 62–73 (1993)Google Scholar
  8. 8.
    Blake, I., Seroussi, G., Smart, N.: Elliptic curves in cryptography. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  9. 9.
    Baek, J., Steinfeld, R., Zheng, Y.: Formal proofs for the security of signcryption. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 80–98. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Boyen, X.: Multipurpose identity-based signcryption: A swiss army knife for identity-based cryptography. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 382–398. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Chow, S., et al.: Efficient forward and provably secure ID-Based signcryption scheme with public verifiability and public ciphertext authenticity. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 352–369. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Cramer, R., Shoup, V.: A Practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)Google Scholar
  13. 13.
    Joux, A., Nguyen, K.: Separating Decision Diffie-Hellman from Diffie-Hellman in cryptographic groups. Journal of Cryptology 16(4), 239–247 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Libert, B., Quisquater, J.-J.: New identity based signcryption schemes from pairings. In: IEEE Information Theory Workshop, pp. 155–158 (2003), Full version available at: http://eprint.iacr.org
  15. 15.
    Libert, B., Quisquater, J.-J.: Efficient signcryption with key privacy from Gap-Diffie-Hellman groups. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 187–200. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Libert, B., Quisquater, J.J.: Improved signcryption from q-Diffie-Hellman problems. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 220–234. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Malone-Lee, J.: Identity based signcryption, Cryptology ePrint Archive, Report 2002/098 (2002), Available at: http://eprint.iacr.org
  18. 18.
    Malone-Lee, J., Mao, W.: Two birds one stone: signcryption using RSA. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 211–225. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Menezes, A.-J.: Elliptic curve public key cryptosystems. Kluwer Academic Publishers, Dordrecht (1995)Google Scholar
  20. 20.
    Nalla, D., Reddy, K.C.: Signcryption scheme for Identity-Based Cryptosystems, Cryptology ePrint Archive, Report 2003/066 (2003), Available at: http://eprint.iacr.org
  21. 21.
    Naccache, D., Stern, J.: Signing on a Postcard. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, p. 121. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Pieprzyk, J., Pointcheval, D.: Parallel authentication and public-Key encryption. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 383–401. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    Shin, J.-B., Lee, K., Shim, K.: New DSA-verifiable signcryption schemes. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 35–47. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  24. 24.
    Steinfeld, R., Zheng, Y.: A signcryption scheme based on integer factorization. In: Okamoto, E., Pieprzyk, J.P., Seberry, J. (eds.) ISW 2000. LNCS, vol. 1975, pp. 308–322. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  25. 25.
    Tan, C.-H.: Security analysis of signcryption scheme from q-Diffie-Hellman problems. IEICE Trans. Fundamentals E89CA(1) (January 2006)Google Scholar
  26. 26.
    Zhang, F., Safavi-Naini, R., Susilo, W.: An efficient signature scheme from bilinear pairings and its applications. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 277–290. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  27. 27.
    Zheng, Y.: Digital signcryption or how to achieve cost (signature & encryption) < < cost(signature) + cost(encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Changshe Ma
    • 1
  1. 1.School of ComputerSouth China Normal UniversityGuangzhouChina

Personalised recommendations