Advertisement

New Constructions of Large Binary Sequences Family with Low Correlation

  • Xin Tong
  • Jie Zhang
  • Qiao-Yan Wen
Conference paper
  • 602 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4318)

Abstract

A new family of binary sequences S e (ρ) (U e (ρ)) of period 2 n –1 is constructed for odd (even) n=me and an integer ρ with 1 ≤ ρ< ⌈ \(\frac{m}{2}\) ⌉. The new family S e (ρ) (or U e (ρ)) contains Kim and No’s construction as a subset if m-sequences are excluded from both constructions. Furthermore, the new sequences are proved to have low correlation property, large linear span and large family size.

Keywords

correlation binary sequences large family size linear span 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Simon, M.K., Omura, J., Scholtz, R., Levitt, K.: Spread Spectrum Communications, vol. I–III. Computer Science, Rockville, MD (1985)Google Scholar
  2. 2.
    Gold, R.: Maximal recursive sequences with 3-valued recursive crosscorrelation functions. IEEE Tran. on Info. theory IT-14(1), 154–156 (1968)CrossRefGoogle Scholar
  3. 3.
    Kasami, T.: Weight enumerators for several classes of subcodes of the 2nd order Reed-Muller codes. Inf. Contr. 18, 369–394 (1971)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Kim, S.H., No, J.S.: New families of binary sequences with low correlation. IEEE Tran. on Info. theory 49(11), 3059–3065 (2003)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Boztas, S., Kumar, P.V.: Binary sequences with Gold-like correlation but larger linear span. IEEE Tran. on Info. theory 40(2), 532–537 (1994)zbMATHCrossRefGoogle Scholar
  6. 6.
    Udaya, P.: Polyphase and Frequency Hopping Sequences Obtained from Finite Rings. Ph.D. dissertation, Dept. Elec. Eng., Indian Inst. Technol., Kanpur, India (1992)Google Scholar
  7. 7.
    Trachtenberg, H.M.: On the crosscorrelation functions of maximal linear recurring sequences. Ph.D. dissertation, Univ. South. Calif., Los Angeles (1970)Google Scholar
  8. 8.
    Helleseth, T.: Some results about the cross-correlation function between two maximal linear sequences. Discr. Math. 16, 209–232 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Tang, X., Udaya, P., Fan, P.: A new family of nonbinary sequences with three-level correlation property and large linear span. IEEE Tran. on Info. theory 51(8), 2906–2914 (2005)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Yu, N.Y., Gong, G.: A New Binary Sequence Family With Low Correlation and Large Size. IEEE Tran. on Info. theory 52(4), 1624–1636 (2006)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Olsen, J.D., Scholtz, R.A., Welch, L.R.: Bent-function sequences. IEEE Tran. on Info. theory 28(6), 858–864 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    MacWilliams, F.J., Sloane, N.J.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)zbMATHGoogle Scholar
  13. 13.
    Golomb, S.W., Gong, G.: Signal Design for Good Correlation-For Wireless Communication. Cryptography and Radar. Cambridge Univ. Press, New York (2005)Google Scholar
  14. 14.
    Helleseth, T., Kumar, P.V.: Sequences with low correlation. In: Pless, V., Huffman, C. (eds.) Handbook of Coding Theory. Elsevier, Amsterdam (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Xin Tong
    • 1
  • Jie Zhang
    • 1
  • Qiao-Yan Wen
    • 1
  1. 1.School of ScienceBeijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations