OPMAC: One-Key Poly1305 MAC

  • Dayin Wang
  • Dongdai Lin
  • Wenling Wu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4318)


In this paper, we present One-Key Poly1305 MAC(OPMAC) and prove its security for arbitrary length message. OPMAC is deterministic and takes only one 16-byte key. Previously, Poly1305 MAC is nonce-based and requires two 16-byte keys and a 16-byte nonce, 48-byte in total.


Message Authentication Code Carter-Wegman MAC Universal Hash Family Block cipher Pseudorandom Permutation Pseudorandom Function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bernstein, D.J.: The Poly1305-AES message-authentication code. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 32–49. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Wang, D., Lin, D., Wu, W.: A Variant of Poly1305 MAC and Its Security Proof. In: Hao, Y., Liu, J., Wang, Y.-P., Cheung, Y.-m., Yin, H., Jiao, L., Ma, J., Jiao, Y.-C. (eds.) CIS 2005. LNCS (LNAI), vol. 3802, pp. 375–380. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Goldwasser, S., Bellare, M.: Lecture Notes on Cryptograhpy,
  4. 4.
    Carter, J., Wegman, M.: Universal classes of hash functions. Journal of Computer and System Sciences 18, 143–154 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Wegman, M., Carter, J.: New hash functions and their use in authentication and set equality. Journal of Computer and System Sciences 22, 265–279 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Stinson, D.: Universal hashing and authentication codes. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 74–85. Springer, Heidelberg (1992)Google Scholar
  7. 7.
    Krawczyk, H.: LFSR-based hashing and authentication. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 129–139. Springer, Heidelberg (1994)Google Scholar
  8. 8.
    Stinson, D.: On the connection between universal hashing, combinatorial designs and error-correcting codes. In: Proc. Congressus Numerantium, vol. 114, pp. 7–27 (1996)Google Scholar
  9. 9.
    Black, J.: Message Authentication Codes,
  10. 10.
    Bellare, M., Kiliany, J., Rogaway, P.: The Security of the Cipher Block Chaining Message Authentication Code. Journal of Computer and System Sciences 61(3), 362–399 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Bellare, M., Goldreich, O., Mityagin, A.: The Power of Verification Queries in Message Authentication and Authenticated Encryption. In: Cryptology eprint Archive: Report 2004/309 (2004)Google Scholar
  12. 12.
    Black, J., Rogaway, P.: A Block-Cipher Mode of Operation for Parallelizable Message Authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 384–401. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Iwata, T., Kurosawa, K.: OMAC: One-Key CBC MAC. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Dayin Wang
    • 1
  • Dongdai Lin
    • 1
  • Wenling Wu
    • 1
  1. 1.Key Laboratory of Information Security, Institute of SoftwareChinese Academy of SciencesBeijingChina

Personalised recommendations