Advertisement

A General Construction of Tweakable Block Ciphers and Different Modes of Operations

  • Debrup Chakraborty
  • Palash Sarkar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4318)

Abstract

This work builds on earlier work by Rogaway at Asiacrypt 2004 on tweakable block cipher (TBC) and modes of operations. Our first contribution is to generalize Rogaway’s TBC construction by working over a ring R and by the use of a masking sequence of functions. The ring R can be instantiated as either GF(2 n ) or as ℤ . Further, over GF(2 n ), efficient instantiations of the masking sequence of functions can be done using either a Linear Feedback Shift Register (LFSR), a powering construction or a cellular automata map. Rogaway’s TBC construction was built from the powering construction over GF(2 n ). Our second contribution is to use the general TBC construction to instantiate general constructions of various modes of operations (AE, PRF, MAC, AEAD) given by Rogaway.

Keywords

tweakable block cipher modes of operations AE MAC AEAD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Rogaway, P., Wagner, D.: The EAX mode of operation. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 389–407. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Black, J., Rogaway, P.: A block-cipher mode of operation for parallelizable message authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 384–397. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Gligor, V.D., Donescu, P.: Fast encryption and authentication: XCBC encryption and XECB authentication modes. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 92–108. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Jutla, C.S.: Encryption modes with almost free message integrity. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 529–544. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Katz, J., Yung, M.: Complete characterization of security notions for probabilistic private-key encryption. In: STOC, pp. 245–254 (2000)Google Scholar
  7. 7.
    Lidl, R., Niederreiter, H.: Introduction to finite fields and their applications, revised edn. Cambridge University Press, Cambridge (1994)Google Scholar
  8. 8.
    Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Lucks, S.: Two-pass authenticated encryption faster than generic composition. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 284–298. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    McGrew, D.A., Viega, J.: The security and performance of the galois/counter mode (gcm) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.) ACM Conference on Computer and Communications Security, pp. 98–107. ACM, New York (2002)Google Scholar
  12. 12.
    Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 16–31. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Rogaway, P., Bellare, M., Black, J.: OCB: A block-cipher mode of operation for efficient authenticated encryption. ACM Trans. Inf. Syst. Secur. 6(3), 365–403 (2003)CrossRefGoogle Scholar
  14. 14.
    Tezuka, S., Fushimi, M.: A method of designing cellular automata as pseudo random number generators for built-in self-test for vlsi. In: Finite Fields: Theory, Applications and Algorithms, Contemporary Mathematics, AMS, pp. 363–367 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Debrup Chakraborty
    • 1
  • Palash Sarkar
    • 2
  1. 1.Computer Science Department, CINVESTAV-IPNMexicoMexico
  2. 2.Applied Statistics UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations