Advertisement

Identifying “Interesting” Component Assemblies for NFRs Using Imperfect Information

  • Hernán Astudillo
  • Javier Pereira
  • Claudia López
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4344)

Abstract

Component-based software elaboration becomes unwieldy for some practical situations with large numbers of components for which information is imperfect (incomplete, imprecise and/or uncertain). This article addresses the problem of identifying “interesting” component sets for some given non-functional requirements (NFRs), using imperfect information about large number of components. Rather than providing completely specified solutions, this approach allows architects to identify and compare whole assemblies, and focus eventual information- improvement efforts only on those components that are part of candidate assemblies. The proposed technique builds on the Azimut layered architectural abstractions, adapting an algorithmic approach used to mine association rules, and taking three parameters: a minimal “support score” that candidate assemblies must meet, and two credibility-value thresholds about the catalog themselves. An example illustrates the approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    López, C., Astudillo, H.: Explicit architectural policies to satisfy nFRs using COTS. In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 227–236. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Astudillo, H., Pereira, J., López, C.: Evaluating alternative COTS assemblies from imperfect component information. In: Hofmeister, C., Crnković, I., Reussner, R. (eds.) QoSA 2006. LNCS, vol. 4214, pp. 27–42. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Ncube, C., Maiden, N.: PORE: Procurement-oriented requirements engineering method for the CBSE development paradigm. In: International Workshop on Component-based Software Engineering (1999)Google Scholar
  4. 4.
    Ochs, M., Pfahl, D., Chrobok-Diening, G., Nothhelfer-Kolb, B.: A COTS acquisition process: Definition and application experience. In: ESCOM 2000: 11th European Software Control and Metric Conference (2000)Google Scholar
  5. 5.
    Phillips, B.C., Polen, S.M.: Add decision analysis to your COTS selection process. The Journal of Defense Software Engineering, Software Technology Support Center Crosstalk (2002)Google Scholar
  6. 6.
    Kontio, J.: A case study in applying a systematic method for COTS selection. In: ICSE 1996: Proceedings of the 18th International Conference on Software Engineering, Washington, DC, USA, pp. 201–209. IEEE Computer Society, Los Alamitos (1996)CrossRefGoogle Scholar
  7. 7.
    Douglas, K., Laurence, B.: Applying social-technical approach for COTS selection. In: Proceedings of 4th UKAIS Conference, University of York. McGraw-Hill, New York (1999)Google Scholar
  8. 8.
    Alves, C., Castro, J.: CRE: A systematic method for COTS components selection. In: SBES 2001: 15th Brazilian Symposium on Software Engineering (2001)Google Scholar
  9. 9.
    Chung, L., Cooper, K.: COTS-aware requirements engineering and software architecting. Software Engineering Research and Practice, 57–63 (2004)Google Scholar
  10. 10.
    Group, O.M.: MDA Guide Version 1.0.1. Object Management Group (OMG) (2003)Google Scholar
  11. 11.
    Gokhale, A., Balasubramanian, K., Lu, T.: CoSMIC: addressing crosscutting deployment and configuration concerns of distributed real-time and embedded systems. In: OOPSLA 2004: Companion to the 19th Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and Applications, pp. 218–219. ACM Press, New York (2004)CrossRefGoogle Scholar
  12. 12.
    Cao, F., Bryant, B.R., Burt, C.C., Raje, R.R., Olson, A.M., Augustona, M.: A component assembly approach based on aspect-oriented generative domain modeling. In: Electronic Notes in Theoretical Computer Science, SC 2004: Procs. of the Software Composition Workshop, Science Direct, vol. 114, pp. 119–136 (2005)Google Scholar
  13. 13.
    Tanenbaum, A.S., van Steen, M.: Distributed Systems: Principles and Paradigms. Prentice-Hall, Englewood Cliffs (2002)zbMATHGoogle Scholar
  14. 14.
    Britton, C., Bye, P.: IT Architectures and Middleware: Strategies for Building Large, Integrated Systems, 2nd edn. Addison-Wesley Professional, Reading (2004)Google Scholar
  15. 15.
    López, C., Astudillo, H.: Multidimensional catalogs for systematic exploration of component-based design spaces. In: IWASE 2006: 1st International Workshop on Advanced Software Engineering. Proceedings of IFIP World Congress 2006 (2006)Google Scholar
  16. 16.
    Pomerol, J.C., Barba-Romero, S.: Multicriterion Decision in Management: Principles and Practice. Kluwer Academic Publishers, Dordrecht (2000)zbMATHGoogle Scholar
  17. 17.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules, pp. 580–592. Morgan Kaufmann, San Francisco (1998)Google Scholar
  18. 18.
    Roy, B.: Multicriteria Methodology for Decision Aiding. Kluwer, Dordrecht (1996)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hernán Astudillo
    • 1
  • Javier Pereira
    • 2
  • Claudia López
    • 1
  1. 1.Universidad Técnica Federico Santa María, Departamento de InformáticaValparaísoChile
  2. 2.Universidad Diego Portales, Escuela de Ingeniería InformáticaSantiagoChile

Personalised recommendations