Advertisement

Architecture Transformation and Refinement for Model-Driven Adaptability Management: Application to QoS Provisioning in Group Communication

  • Christophe Chassot
  • Karim Guennoun
  • Khalil Drira
  • François Armando
  • Ernesto Exposito
  • André Lozes
Conference paper
  • 310 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4344)

Abstract

In this paper, we identify and define the architectural properties of the different levels of abstraction necessary for adaptability management. The distinguished levels allow describing service-level, component-level and process-level architectural properties. Using graph grammars and graph transformation, we enforce the conventional graph-based representation of system and software architectures. We go beyond past informal studies by providing formal rules for architecture refinement and transformation. We focus on applications where communication is used to support the cooperation between distributed group members. We consider a concrete case study of Military Emergency Operation (MEO). Operation management.

Keywords

Graph grammars self-adaptability model-oriented automated management service-oriented dynamic architecture QoS cooperative and mobile applications 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Farkas, K., Wellnitz, O., Dick, M., Gu, X., Busse, M., Effelsberg, W., Rebahi, Y., Sisalem, D., Grigoras, D., Stefanidis, K., Serpanos, D.N.: Real-time service provisioning for mobile and wireless networks. Elsevier Computer Communication Journal 29(5), 540–550 (2006)Google Scholar
  2. 2.
    Landry, R., Grace, K., Saidi, A.: On the Design and Management of Heterogeneous Networks: A Predictability-Based Perspective. IEEE Communications Magazine, Military and Tactical Communications (November 2004)Google Scholar
  3. 3.
    Balasubramaniam, S., Indulska, J.: Vertical handover supporting pervasive computing. Elsevier Computer Communication, Special Issue on 4G/Future Wireless networks 27(8), 708–719 (2004)Google Scholar
  4. 4.
    Kaloxylos, A., Lampropoulos, G., Passas, N., Merakos, L.: A flexible handover mechanism for seamless service continuity in heterogeneous environments. Elsevier Computer Communications 29(6), 717–729 (2006)Google Scholar
  5. 5.
    Wu, D. (Student Member), Hou, Y.T., Zhu, W.: Streaming Video over the Internet: Approaches and Directions. IEEE Transactions on Circuits and Systems for Video Technology 11(1) (February 2001)Google Scholar
  6. 6.
    Yu, F., Zhang, Q., Zhu, W., Zhang, Y.-Q.: QoS-adaptive proxy caching for multimedia streaming over the Internet. IEEE Transactions on Circuits and Systems for Video Technology, 13(3), 257–269 (2003)CrossRefGoogle Scholar
  7. 7.
    Akan, B., Akyildiz, I.F.: ATL: An Adaptive Transport Layer Suite for Next-Generation Wireless Internet. IEEE Journal on Selected Areas in Communications 22(5) (June 2004)Google Scholar
  8. 8.
    Perez, G.M., Gomez Skarmeta, A.F.: Policy-Based Dynamic Provision of IP Services in a Secure VPN Coalition Scenario. IEEE Communications Magazine, Military and Tactical Communications (November 2004)Google Scholar
  9. 9.
    Marshall, I.W., Roadknight, C.: Provision of quality of service for active services. Elsevier Computer Networks 36(1), 75–85 (2001)CrossRefGoogle Scholar
  10. 10.
    Floyd, S., Kohler, E.: Profile for DCCP Congestion Control ID 3: TFRC Congestion Control, Internet Draft (December 2004)Google Scholar
  11. 11.
    Stewart, R., Xie, Q., et al.: Stream Control Transmission Protocol, IETF, RFC 2960 (2000)Google Scholar
  12. 12.
    Wong, G.T., Hiltunen, M.A., Schlichting, R.D.: A Configurable and Extensible Transport Protocol. In: IEEE INFOCOM, Anchorage, Alaska, April 22-26 (2001)Google Scholar
  13. 13.
    Mocito, J., Rosa, L., Almeida, N., Miranda, H., Rodrigues, L., Lopes, A.: Context Adaptation of the Communication Stack. In: Proceedings of the 25th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW 2005), Columbus, OH, USA, June 6-10 (2005)Google Scholar
  14. 14.
    Exposito, E., Diaz, M., Snac, P.: FPTP: the XQoS aware and fully programmable transport protocol. In: 11th IEEE International Conference on Networks (ICON 2003), Sydney, Australia, September 28- October 1 (2003)Google Scholar
  15. 15.
    Bridges, P.G., Chen, W.-K., Hiltunen, M.A., Schlichting, R.D.: Supporting Coordinated Adaptation in Networked Systems. In: 8th Workshop on Hot Topics in Operating Systems (HotOS-VIII), Elmau, Germany (May 2001)Google Scholar
  16. 16.
    Ehrig, H., Korff, M., Lowe, M.: Tutorial Introduction to the Algebraic Approach of Graph Grammars Based on Double and Single Pushouts. In: Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) Graph Grammars 1990. LNCS, vol. 532, pp. 24–37. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  17. 17.
    Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph Transformation. World Scientific Publishing, Singapore (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Christophe Chassot
    • 1
    • 2
  • Karim Guennoun
    • 1
  • Khalil Drira
    • 1
  • François Armando
    • 1
  • Ernesto Exposito
    • 1
    • 2
  • André Lozes
    • 1
    • 2
  1. 1.LAAS-CNRS ToulouseFrance
  2. 2.University of Toulouse / INSA / IUT ToulouseFrance

Personalised recommendations