Advertisement

Functionalization of Probe Tips and Supports for Single-Molecule Recognition Force Microscopy

  • Andreas Ebner
  • Linda Wildling
  • Rong Zhu
  • Christian Rankl
  • Thomas Haselgrübler
  • Peter Hinterdorfer
  • Hermann J. GruberEmail author
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 285)

Abstract

The measuring tip of a force microscope can be converted into a monomolecular sensorif one or few “ligand” molecules are attached to the apex of the tip while maintainingligand function. Functionalized tips are used to study fine details of receptor–ligand interactionby force spectroscopy or to map cognate “receptor” molecules on the sample surface. Thereceptor (or target) molecules can be present on the surface of a biological specimen; alternatively,soluble target molecules must be immobilized on ultraflat supports. This review describes the methodsof tip functionalization, as well as target molecule immobilization. Silicon nitride tips, siliconchips, and mica have usually been functionalized in three steps: (1) aminofunctionalization,(2) crosslinker attachment, and (3) ligand/receptor coupling, whereby numerous crosslinkersare available to couple widely different ligand molecules. Gold-covered tips and/or supports haveusually been coated with a self-assembled monolayer, on top of which the ligand/receptor moleculehas been coupled either directly or via a crosslinker molecule. Apart from these general strategies,many simplified methods have been used for tip and/or support functionalization, even single-stepmethods such as adsorption or chemisorption being very efficient under suitable circumstances. Allmethods are described with the same explicitness and critical parameters are discussed. In conclusion,this review should help to find suitable methods for specific problems of tip and support functionalization.

Force microscopy Functionalization Recognition Silane Silicon nitride  

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hörber JK, Miles MJ (2003) Science 302:1002 Google Scholar
  2. 2.
    Scheuring S, Muller DJ, Ringler P, Heymann JB, Engel A (1999) J Microsc 193:28 Google Scholar
  3. 3.
    Hinterdorfer P, Dufrene YF (2006) Nat Methods 3:347 Google Scholar
  4. 4.
    Kienberger F, Ebner A, Gruber HJ, Hinterdorfer P (2006) Acc Chem Res 39:29 Google Scholar
  5. 5.
    Leckband D, Israelachvili J (2001) Q Rev Biophys 34:105 Google Scholar
  6. 6.
    Kim C, Seo K, Kim B, Park N, Choi YS, Park KA, Lee YH (2003) Phys Rev B 68 Google Scholar
  7. 7.
    Radmacher M, Cleveland JP, Fritz M, Hansma HG, Hansma PK (1994) Biophys J 66:2159 Google Scholar
  8. 8.
    Willemsen O, Snel M, van der Werf KO, de Grooth BG, Greve J, Hinterdorfer P, Gruber H, Schindler H, van Kooyk Y, Figdor C (1998) Biophys J 75:2220 Google Scholar
  9. 9.
    Stroh CM, Ebner A, Geretschlager M, Freudenthaler G, Kienberger F, Kamruzzahan ASM, Smith-Gill SJ, Gruber HJ, Hinterdorfer P (2004) Biophys J 87:1981 Google Scholar
  10. 10.
    Stroh C, Wang H, Bash R, Ashcroft B, Nelson J, Gruber H, Lohr D, Lindsay SM, Hinterdorfer P (2004) Proc Natl Acad Sci USA 101:12503 Google Scholar
  11. 11.
    Ebner A, Kienberger F, Kada G, Stroh CM, Geretschlager M, Kamruzzahan ASM, Wildling L, Johnson WT, Ashcroft B, Nelson J, Lindsay SM, Gruber HJ, Hinterdorfer P (2005) Chem Phys Chem 6:897 Google Scholar
  12. 12.
    Evans E, Ritchie K (1997) Biophys J 72:1541 Google Scholar
  13. 13.
    Baumgartner W, Hinterdorfer P, Ness W, Raab A, Vestweber D, Schindler H, Drenckhahn D (2000) Proc Natl Acad Sci USA 97:4005 Google Scholar
  14. 14.
    Nevo R, Stroh C, Kienberger F, Kaftan D, Brumfeld V, Elbaum M, Reich Z, Hinterdorfer P (2003) Nat Struct Biol 10:553 Google Scholar
  15. 15.
    Wieland JA, Gewirth AA, Leckband DE (2005) J Biol Chem 280:41037 Google Scholar
  16. 16.
    Willemsen OH, Snel MME, Cambi A, Greve J, De Grooth BG, Figdor CG (2000) Biophys J 79:3267 Google Scholar
  17. 17.
    Wong JY, Kuhl TL, Israelachvili JN, Mullah N, Zalipsky S (1997) Science 275:820 Google Scholar
  18. 18.
    Merkel R, Nassoy P, Leung A, Ritchie K, Evans E (1999) Nature 397:50 Google Scholar
  19. 19.
    Tsukasaki Y, Kitamura K, Shimizu K, Iwane AH, Takai Y, Yanagida T (2007) J Mol Biol 367:996 Google Scholar
  20. 20.
    Li F, Redick SD, Erickson HP, Moy VT (2003) Biophys J 84:1252 Google Scholar
  21. 21.
    Benoit M, Gabriel D, Gerisch G, Gaub HE (2000) Nat Cell Biol 2:313 Google Scholar
  22. 22.
    Baumgartner W, Golenhofen N, Grundhofer N, Wiegand J, Drenckhahn D (2003) J Neurosci 23:11008 Google Scholar
  23. 23.
    Duwez A-S, Poleunis C, Bertrand P, Nysten B (2001) Langmuir 17:6351 Google Scholar
  24. 24.
    Frisbie CD, Rozsnyai LF, Noy A, Wrighton MS, Lieber CM (1994) Science 265:2071 Google Scholar
  25. 25.
    Duwez A-S, Cuenot S, Jerome C, Gabriel S, Jerome R, Rapino S, Zerbetto F (2006) Nat Nano 1:122 Google Scholar
  26. 26.
    Jerome C, Willet N, Jerome R, Duwez A-S (2004) Chem Phys Chem 5:147 Google Scholar
  27. 27.
    Brockwell DJ, Paci E, Zinober RC, Beddard GS, Olmsted PD, Smith DA, Perham RN, Radford SE (2003) Nat Struct Biol 10:731 Google Scholar
  28. 28.
    Dammer U, Hegner M, Anselmetti D, Wagner P, Dreier M, Huber W, Guntherodt HJ (1996) Biophys J 70:2437 Google Scholar
  29. 29.
    Lee GU, Kidwell DA, Colton RJ (1994) Langmuir 10:354 Google Scholar
  30. 30.
    Lo Y-S, Huefner ND, Chan WS, Stevens F, Harris JM, Beebe TP (1999) Langmuir 15:1373 Google Scholar
  31. 31.
    Ludwig M, Dettmann W, Gaub HE (1997) Biophys J 72:445 Google Scholar
  32. 32.
    Moy VT, Florin E-L, Gaub HE (1994) Coll Surf A Physicochem Eng Aspects 93:343 Google Scholar
  33. 33.
    Wong J, Chilkoti A, Moy VT (1999) Biomol Eng 16:45 Google Scholar
  34. 34.
    Avci R, Schweitzer M, Boyd RD, Wittmeyer J, Steele A, Toporski J, Beech W, Arce FT, Spangler B, Cole KM, McKay DS (2004) Langmuir 20:11053 Google Scholar
  35. 35.
    Baumgartner W, Gruber HJ, Hinterdorfer P, Drenckhahn D (2000) Single Mol 1:119 Google Scholar
  36. 36.
    Bonanni B, Kamruzzahan ASM, Bizzarri AR, Rankl C, Gruber HJ, Hinterdorfer P, Cannistraro S (2005) Biophys J 89:2783 Google Scholar
  37. 37.
    De Paris R, Strunz T, Oroszlan K, Güntherrodt H-J, Hegner M (2000) Single Mol 4:285 Google Scholar
  38. 38.
    Ebner A, Wildling L, Kamruzzahan ASM, Rankl C, Wruss J, Hahn CD, Hölzl M, Kienberger F, Blaas D, Hinterdorfer P, Gruber HJ (2007) Bioconjugate Chemistry 18:1176 Google Scholar
  39. 39.
    Ebner A, Kienberger F, Huber C, Kamruzzahan AS, Pastushenko VP, Tang J, Kada G, Gruber HJ, Sleytr UB, Sara M, Hinterdorfer P (2006) Chem Bio Chem 7:588 Google Scholar
  40. 40.
    Grange W, Strunz T, Schumakovitch I, Güntherodt H-J, Hegner M (2001) Single Mol 2:75 Google Scholar
  41. 41.
    Gamsjaeger R, Wimmer B, Kahr H, Tinazli A, Picuric S, Lata S, Tampe R, Maulet Y, Gruber HJ, Hinterdorfer P, Romanin C (2004) Langmuir 20:5885 Google Scholar
  42. 42.
    Gu J, Xiao Z, Yam C-M, Qin G, Deluge M, Boutet S, Cai C (2005) Biophys J 89:L31 Google Scholar
  43. 43.
    Hukkanen E, Wieland J, Gewirth A, Leckband D, Braatz RD (2005) Biophys J 89:3434 Google Scholar
  44. 44.
    Hinterdorfer P, Baumgartner W, Gruber HJ, Schilcher K, Schindler H (1996) Proc Natl Acad Sci USA 93:3477 Google Scholar
  45. 45.
    Hinterdorfer P, Schilcher K, BAumgartner W, Gruber HJ, Schindler H (1998) Nanobiology 4:177 Google Scholar
  46. 46.
    Kamruzzahan ASM, Ebner A, Wildling L, Kienberger F, Riener CK, Hahn CD, Pollheimer PD, Winklehner P, Holzl M, Lackner B, Schorkl DM, Hinterdorfer P, Gruber HJ (2006) Bioconjugate Chem 17:1473 Google Scholar
  47. 47.
    Kienberger F, Pastushenko VP, Kada G, Gruber HJ, Riener C, Schindler H, Hinterdorfer P (2000) Single Mol 1:123 Google Scholar
  48. 48.
    Kienberger F, Kada G, Gruber HJ, Pastushenko P, Riener C, Trieb M, Knaus H-G, Schindler H, Hinterdorfer P (2000) Single Mol 1:25 Google Scholar
  49. 49.
    Kada G, Blayney L, Jeyakumar LH, Kienberger F, Pastushenko VP, Fleischer S, Schindler H, Lai FA, Hinterdorfer P (2001) Ultramicroscopy 86:129 Google Scholar
  50. 50.
    Langry KC, Ratto TV, Rudd RE, McElfresh MW (2005) Langmuir 21:12064 Google Scholar
  51. 51.
    Lin L, Wang H, Liu Y, Yan H, Lindsay S (2006) Biophys J 90:4236 Google Scholar
  52. 52.
    Puntheeranurak T, Wildling L, Gruber HJ, Kinne RK, Hinterdorfer P (2006) J Cell Sci 119:2960 Google Scholar
  53. 53.
    Puntheeranurak T, Wimmer B, Castaneda F, Gruber HJ, Hinterdorfer P, Kinne RKH (2007) Biochemistry 46:2797 Google Scholar
  54. 54.
    Ratto TV, Langry KC, Rudd RE, Balhorn RL, Allen MJ, McElfresh MW (2004) Biophys J 86:2430 Google Scholar
  55. 55.
    Riener CK, Stroh CM, Ebner A, Klampfl C, Gall AA, Romanin C, Lyubchenko YL, Hinterdorfer P, Gruber HJ (2003) Anal Chim Acta 479:59 Google Scholar
  56. 56.
    Riener CK, Kienberger F, Hahn CD, Buchinger GM, Egwim IOC, Haselgrubler T, Ebner A, Romanin C, Klampfl C, Lackner B (2003) Anal Chim Acta 497:101 Google Scholar
  57. 57.
    Ros R, Schwesinger F, Anselmetti D, Kubon M, Schafer R, Pluckthun A, Tiefenauer L (1998) Proc Natl Acad Sci USA 95:7402 Google Scholar
  58. 58.
    Raab A, Han W, Badt D, Smith-Gill SJ, Lindsay SM, Schindler H, Hinterdorfer P (1999) Nat Biotechnol 17:902 Google Scholar
  59. 59.
    Schwesinger F, Ros R, Strunz T, Anselmetti D, Guntherodt H, Honegger A, Jermutus L, Tiefenauer L, Pluckthun A (2000) Proc Natl Acad Sci USA 97:9972 Google Scholar
  60. 60.
    Strunz T, Oroszlan K, Schafer R, Guntherodt HJ (1999) Proc Natl Acad Sci USA 96:11277 Google Scholar
  61. 61.
    Strunz T, Oroszlan K, Schumakovitch I, Guntherodt H, Hegner M (2000) Biophys J 79:1206 Google Scholar
  62. 62.
    Wang H, Bash R, Lindsay SM, Lohr D (2005) Biophys J 89:3386 Google Scholar
  63. 63.
    Wielert-Badt S, Hinterdorfer P, Gruber H, Lin J, Badt D, Wimmer B, Schindler H, Kinne R (2002) Biophys J 82:2767 Google Scholar
  64. 64.
    Cross B, Ronzon F, Roux B, Rieu JP (2005) Langmuir 21:5149 Google Scholar
  65. 65.
    Desmeules P, Grandbois M, Bondarenko VA, Yamazaki A, Salesse C (2002) Biophys J 82:3343 Google Scholar
  66. 66.
    Grandbois M, Beyer M, Rief M, Clausen-Schaumann H, Gaub HE (1999) Science 283:1727 Google Scholar
  67. 67.
    Grandbois M, Dettmann W, Benoit M, Gaub HE (2000) J Histochem Cytochem 48:719 Google Scholar
  68. 68.
    Kühner F, Costa LT, Bisch PM, Thalhammer S, Heckl WM, Gaub HE (2004) Biophys J 87:2683 Google Scholar
  69. 69.
    Touhami A, Hoffmann B, Vasella A, Denis FA, Dufrene YF (2003) Langmuir 19:1745 Google Scholar
  70. 70.
    Touhami A, Hoffmann B, Vasella A, Denis FA, Dufrene YF (2003) Microbiology 149:2873 Google Scholar
  71. 71.
    Touhami A, Jericho MH, Beveridge TJ (2007) Langmuir 23:2755 Google Scholar
  72. 72.
    Sen S, Subramanian S, Discher DE (2005) Biophys J 89:3203 Google Scholar
  73. 73.
    Gad M, Itoh A, Ikai A (1997) Cell Biol Int 21:697 Google Scholar
  74. 74.
    Afrin R, Yamada T, Ikai A (2004) Ultramicroscopy 100:187 Google Scholar
  75. 75.
    Almqvist N, Bhatia R, Primbs G, Desai N, Banerjee S, Lal R (2004) Biophys J 86:1753 Google Scholar
  76. 76.
    Bustanji Y, Arciola CR, Conti M, Mandello E, Montanaro L, Samori B (2003) Proc Natl Acad Sci USA 100:13292 Google Scholar
  77. 77.
    Schmitt L, Ludwig M, Gaub HE, Tampe R (2000) Biophys J 78:3275 Google Scholar
  78. 78.
    Conti M, Falini G, Samori B (2000) Angew Chem Int Ed Engl 39:215 Google Scholar
  79. 79.
    Florin EL, Moy VT, Gaub HE (1994) Science 264:415 Google Scholar
  80. 80.
    Florin E-L, Rief M, Lehmann H, Ludwig M, Dornmair C, Moy VT, Gaub HE (1995) Biosens Bioelectron 10:895 Google Scholar
  81. 81.
    Chen A, Moy VT (2000) Biophys J 78:2814 Google Scholar
  82. 82.
    Liu W, Montana V, Chapman ER, Mohideen U, Parpura V (2003) Proc Natl Acad Sci USA 100:13621 Google Scholar
  83. 83.
    Vinckier A, Gervasoni P, Zaugg F, Ziegler U, Lindner P, Groscurth P, Pluckthun A, Semenza G (1998) Biophys J 74:3256 Google Scholar
  84. 84.
    Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Chem Rev 105:1103 Google Scholar
  85. 85.
    Hahn CD, Leitner C, Weinbrenner T, Schlapak R, Tinazli A, Tampe R, Lackner B, Steindl C, Hinterdorfer P, Gruber HJ, Holzl M (2007) Bioconjugate Chem 18:247 Google Scholar
  86. 86.
    Hegner M, Wagner P, Semenza G (1993) Surf Sci 291:39 Google Scholar
  87. 87.
    Tinazli A, Tang J, Valiokas R, Picuric S, Lata S, Piehler J, Liedberg B, Tampe R (2005) Chem Eur J 11:5249 Google Scholar
  88. 88.
    Wagner P, Hegner M, Güntherodt H-J, Semenza G (1995) Langmuir 11:3867 Google Scholar
  89. 89.
    Hahn CD, Tinazli A, Hölzl M, Leitner C, Frederix F, Lackner B, Müller N, Klampfl C, Tampé R, Gruber HJ (2007) Chem Monthly 138:245–252 Google Scholar
  90. 90.
    Benesch J, Svedhem S, Svensson SCT, Valiokas R, Liedberg B, Tengvall P (2001) J Biomater Sci Polym 12:581 Google Scholar
  91. 91.
    Wei ZQ, Wang C, Zhu CF, Zhou CQ, Xu B, Bai CL (2000) Surf Sci 459:401 Google Scholar
  92. 92.
    Karrasch S, Dolder M, Schabert F, Ramsden J, Engel A (1993) Biophys J 65:2437 Google Scholar
  93. 93.
    Chen X, Davies MC, Roberts CJ, Tendler SJB, Williams PM, Davies J, Dawkes AC, Edwards JC (1997) Langmuir 13:4106 Google Scholar
  94. 94.
    Conti M, Donati G, Cianciolo G, Stefoni S, Samorì B (2002) J Biomed Mater Res 61:370 Google Scholar
  95. 95.
    Andrade JD, Hlady V, Wei A-P, Ho C-H, Lea AS, Jeon SI, Lin YS, Stroup E (1992) Clin Mater 11:67 Google Scholar
  96. 96.
    Carson GA, Granick S (1990) J Mater Res 5:1745 Google Scholar
  97. 97.
    Bustamante C, Vesenka J, Tang CL, Rees W, Guthold M, Keller R (1992) Biochemistry 31:22 Google Scholar
  98. 98.
    Feng XZ, Bash R, Balagurumoorthy P, Lohr D, Harrington RE, Lindsay SM (2000) Nucl Acids Res 28:593 Google Scholar
  99. 99.
    Kondo A, Higashitani K (1992) J Colloid Interface Sci 150:344 Google Scholar
  100. 100.
    Fitzpatrick H, Luckham PF, Eriksen S, Hammond K (1992) J Colloid Interface Sci 149:1 Google Scholar
  101. 101.
    Chilkoti A, Boland T, Ratner BD, Stayton PS (1995) Biophys J 69:2125 Google Scholar
  102. 102.
    Lo Y-S, Simons J, Beebe TP (2002) J Phys Chem B 106:9847 Google Scholar
  103. 103.
    Green NM (1990) Methods Enzymol 184:51 Google Scholar
  104. 104.
    Yuan C, Chen A, Kolb P, Moy VT (2000) Biochemistry 39:10219 Google Scholar
  105. 105.
    Fritz J, Katopodis AG, Kolbinger F, Anselmetti D (1998) Proc Natl Acad Sci USA 95:12283 Google Scholar
  106. 106.
    Jin Y, Wang K, Tan W, Wu P, Wang Q, Huang H, Huang S, Tang Z, Guo Q (2004) Anal Chem 76:5721 Google Scholar
  107. 107.
    Bell DS, Jones AD (2005) J Chromatogr A 1073:99 Google Scholar
  108. 108.
    Allen S, Chen X, Davies J, Davies MC, Dawkes AC, Edwards JC, Roberts CJ, Sefton J, Tendler SJ, Williams PM (1997) Biochemistry 36:7457 Google Scholar
  109. 109.
    Brogan KL, Shin JH, Schoenfisch MH (2004) Langmuir 20:9729 Google Scholar
  110. 110.
    Brogan KL, Schonfisch MH (2005) Langmuir 21:3054 Google Scholar
  111. 111.
    Chowdhury PB, Luckham PF (1998) Coll Surf A Physicochem Eng Aspects 143:53 Google Scholar
  112. 112.
    Jiang Y, Zhu C, Ling L, Wan L, Fang X, Bai C (2003) Anal Chem 75:2112 Google Scholar
  113. 113.
    Lyubchenko YL, Gall AA, Shlyakhtenko LS, Harrington RE, Jacobs BL, Oden PI, Lindsay SM (1992) J Biomol Struct Dyn 10:589 Google Scholar
  114. 114.
    Lyubchenko Y, Shlyakhtenko L, Harrington R, Oden P, Lindsay S (1993) Proc Natl Acad Sci USA 90:2137 Google Scholar
  115. 115.
    Wang H, Bash R, Yodh JG, Hager GL, Lohr D, Lindsay SM (2002) Biophys J 83:3619 Google Scholar
  116. 116.
    Wang H, Bash R, Yodh JG, Hager G, Lindsay SM, Lohr D (2004) Biophys J 87:1964 Google Scholar
  117. 117.
    Klein DG, Stroh CM, Jensenius H, van Es M, Kamruzzahan ASM, Stamouli A, Gruber HJ, Oosterkamp TH, Hinterdorfer P (2003) Chem Phys Chem 4:1367 Google Scholar
  118. 118.
    Trau M, Murray BS, Grant K, Grieser F (1992) J Colloid Interface Sci 148:182 Google Scholar
  119. 119.
    Crampton N, Bonass WA, Kirkham J, Thomson NH (2005) Langmuir 21:7884 Google Scholar
  120. 120.
    Howarter JA, Youngblood JP (2006) Langmuir 22:11142 Google Scholar
  121. 121.
    Devaux C, Chapel J-P (2003) Eur Phys J E Soft Matter 10:77 Google Scholar
  122. 122.
    Stevens MJ (1999) Langmuir 15:2773 Google Scholar
  123. 123.
    Gauthier S, Aime JP, Bouhacina T, Attias AJ, Desbat B (1996) Langmuir 12:5126 Google Scholar
  124. 124.
    Vrancken KC, van der Voort P, Possemiers K, Vansant EF (1995) J Colloid Interface Sci 174:86 Google Scholar
  125. 125.
    El Shafei GMS, Mokhtar M (1995) J Colloid Interface Sci 175:518 Google Scholar
  126. 126.
    Claesson PM, Cho DL, Gölander C-G, Kiss E, Parker JL (1990) Progr Coll Polym Sci 74:217 Google Scholar
  127. 127.
    Carson GA, Granick S (1989) J Appl Polym Sci 37:2767 Google Scholar
  128. 128.
    Gölander C-G, Kiss E (1993) Colloids Surf A 74:217 Google Scholar
  129. 129.
    Parker JL, Cho DL, Claesson PM (1989) J Phys Chem 93:6121 Google Scholar
  130. 130.
    Kojio K, Ge S, Takahara A, Kajiyama T (1998) Langmuir 14:971 Google Scholar
  131. 131.
    Durrant PJ, Durrant B (1970) Introduction to advanced inorganic chemistry. Longman Group, London Google Scholar
  132. 132.
    Sjöblom J, Stakkestad G, Ebeltoft H (1995) Langmuir 11:2652 Google Scholar
  133. 133.
    Waddell TG, Leyden DE, DeBello MT (1981) J Am Chem Soc 103:5303 Google Scholar
  134. 134.
    Linde HG (1990) J Appl Polym Sci 40:613 Google Scholar
  135. 135.
    Piers AS, and Rochester CH (1995) J Colloid Interface Sci 174:97 Google Scholar
  136. 136.
    Trens P, Denoyel R (1996) Langmuir 12:2781 Google Scholar
  137. 137.
    Park S-H, Sposito G (2002) Phys Rev Lett 89:085501 Google Scholar
  138. 138.
    Wei Z, Wang C, Wang Z, Liu D, Bai C (2001) Surf Interface Anal 32:275 Google Scholar
  139. 139.
    Lee G, Chrisey L, Colton R (1994) Science 266:771 Google Scholar
  140. 140.
    Zhang F, Srinivasan MP (2004) Langmuir 20:2309 Google Scholar
  141. 141.
    Ebner A, Hinterdorfer P, Gruber HJ (2007) Ultramicroscopy 107:922 Google Scholar
  142. 142.
    Moon JH, Shin JW, Kim SY, Park JW (1996) Langmuir 12:4621 Google Scholar
  143. 143.
    Otsuka H, Arima T, Koga T, Takahara A (2005) J Phys Organ Chem 18:957 Google Scholar
  144. 144.
    Kallury KMR, Macdonald PM, Thompson M (1994) Langmuir 10:492 Google Scholar
  145. 145.
    Haselgrübler T, Amerstorfer A, Schindler H, Gruber H (1995) Bioconjugate Chem 6:242 Google Scholar
  146. 146.
    Riener CK, Kada G, Gruber HJ (2002) Anal Bioanal Chem 373:266 Google Scholar
  147. 147.
    Zara JJ, Wooda RD, Boonb P, Kimc C-H, Pomatoc N, Bredehorst R, Vogel C-W (1991) Anal Biochem 194:156 Google Scholar
  148. 148.
    Carlsson J, Drevin H, Axen R (1978) Biochem J 173:723 Google Scholar
  149. 149.
    Morpurgo M, Veronese FM, Kachensky D, Harris JM (1996) Bioconjugate Chem 7:363 Google Scholar
  150. 150.
    Gruber H, Kada G, Pragl B, Riener C, Hahn C, Harms G, Ahrer W, Dax T, Hohenthanner K, Knaus H (2000) Bioconjugate Chem 11:161 Google Scholar
  151. 151.
    Dorner MM, Bassett EW, Beiser SM, Kabat EA, Tanenbaum SW (1967) J Exp Med 125:823 Google Scholar
  152. 152.
    Tournier EJM, Wallach J, Blond P (1998) Anal Chim Acta 361:33 Google Scholar
  153. 153.
    Walsh MK, Wang X, Weimer BC (2001) J Biochem Biophys Methods 47:221 Google Scholar
  154. 154.
    Johnsson B, Lofas S, Lindquist G (1991) Anal Biochem 198:268 Google Scholar
  155. 155.
    Marchand-Brynaert J, Deldime M, Dupont I, Dewez J-L, Schneider Y-J (1995) J Colloid Interface Sci 173:236 Google Scholar
  156. 156.
    Hölzl M, Tinazli A, Leitner C, Hahn CD, Lackner B, Tampe R, Gruber HJ (2007) Langmuir 23:5571 Google Scholar
  157. 157.
    Peelen D, Smith LM (2005) Langmuir 21:266 Google Scholar
  158. 158.
    Horn R, Ding S, Gruber H (2000) J Gen Physiol 116:461 Google Scholar
  159. 159.
    Prime KL, Whitesides GM (1991) Science 252:1164 Google Scholar
  160. 160.
    Berquand A, Xia N, Castner DG, Clare BH, Abbott NL, Dupres V, Adriaensen Y, Dufrene YF (2005) Langmuir 21:5517 Google Scholar
  161. 161.
    Dammer U, Popescu O, Wagner P, Anselmetti D, Guntherodt H, Misevic G (1995) Science 267:1173 Google Scholar
  162. 162.
    Friedsam C, Del Campo Becares A, Jonas U, Gaub HE, Seitz M (2004) Chem Phys Chem 5:388 Google Scholar
  163. 163.
    Gilbert Y, Deghorain M, Wang L, Xu B, Pollheimer PD, Gruber HJ, Errington J, Hallet B, Haulot X, Verbelen C, Hols P, Dufrene YF (2007) Nano Lett 7:796 Google Scholar
  164. 164.
    Noy A, Vezenov DV, Kayyem JF, Meade TJ, Lieber CM (1997) Chem Biol 4:519 Google Scholar
  165. 165.
    Schönherr H, Beulen MWJ, Bugler J, Huskens J, van Veggel F, Reinhoudt DN, Vancso GJ (2000) J Am Chem Soc 122:4963 Google Scholar
  166. 166.
    Tromas C, Rojo J, de la Fuente JM, Barrientos AG, Garcia R, Penades S (2001) Angew Chem Int Ed 40:3052 Google Scholar
  167. 167.
    Zapotoczny S, Auletta T, de Jong MR, Schonherr H, Huskens J, van Veggel FCJM, Reinhoudt DN, Vancso GJ (2002) Langmuir 18:6988 Google Scholar
  168. 168.
    Skulason H, Frisbie CD (2000) J Am Chem Soc 122:9750 Google Scholar
  169. 169.
    Harada Y, Kuroda M, Ishida A (2000) Langmuir 16:708 Google Scholar
  170. 170.
    Dean D, Han L, Grodzinsky AJ, Ortiz C (2006) J Biomech 39:2555 Google Scholar
  171. 171.
    de la Fuente JM, Penades S (2004) Glycoconjugate J 21:149 Google Scholar
  172. 172.
    Lioubashevski O, Patolsky F, Willner I (2001) Langmuir 17:5134 Google Scholar
  173. 173.
    Höök F, Ray A, Norden B, Kasemo B (2001) Langmuir 17:8305 Google Scholar
  174. 174.
    Green NH, Williams PM, Wahab O, Davies MC, Roberts CJ, Tendler SJB, Allen S (2004) Biophys J 86:3811 Google Scholar
  175. 175.
    Boozer C, Chen S, Jiang S (2006) Langmuir 22:4694 Google Scholar
  176. 176.
    Auletta T, de Jong MR, Mulder A, van Veggel FC, Huskens J, Reinhoudt DN, Zou S, Zapotoczny S, Schonherr H, Vancso GJ, Kuipers L (2004) J Am Chem Soc 126:1577 Google Scholar
  177. 177.
    Zou S, Schönherr H, Vancso GJ (2005) Angew Chem Int Ed 44:956 Google Scholar
  178. 178.
    Wagner P, Hegner M, Kernen P, Zaugg F, Semenza G (1996) Biophys J 70:2052 Google Scholar
  179. 179.
    Wang MS, Palmer LB, Schwartz JD, Razatos A (2004) Langmuir 20:7753 Google Scholar
  180. 180.
    Hochuli E, Dobeli H, Schacher A (1987) J Chromatogr A 411:177 Google Scholar
  181. 181.
    Nieba L, Nieba-Axmann S, Persson A, Hamalainen M, Edebratt F, Hansson A, Lidholm J, Magnusson K, Karlsson A, Pluckthun A (1997) Anal Biochem 252:217 Google Scholar
  182. 182.
    Lata S, Piehler J (2005) Anal Chem 77:1096 Google Scholar
  183. 183.
    Lata S, Reichel A, Brock R, Tampe R, Piehler J (2005) J Am Chem Soc 127:10205 Google Scholar
  184. 184.
    Tinazli A, Piehler J, Beuttler M, Guckenberger R, Tampe R (2007) Nat Nanotechnol 2:220 Google Scholar
  185. 185.
    Dupres V, Menozzi FD, Locht C, Clare BH, Abbott NL, Cuenot S, Bompard C, Raze D, Dufrene YF (2005) Nat Methods 2:515 Google Scholar
  186. 186.
    Yam CM, Xiao Z, Gu J, Boutet S, Cai C (2003) J Am Chem Soc 125:7498 Google Scholar
  187. 187.
    Strother T, Knickerbocker T, Russell JN, Butler JE, Smith LM, Hamers RJ (2002) Langmuir 18:968 Google Scholar
  188. 188.
    Wong SS, Woolley AT, Joselevich E, Lieber CM (1999) Chem Phys Lett 306:219 Google Scholar
  189. 189.
    Wong SS, Joselevich E, Woolley AT, Cheung CL, Lieber CM (1998) Nature 394:52 Google Scholar
  190. 190.
    Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM (2001) Langmuir 17:5605 Google Scholar
  191. 191.
    Szleifer I (1997) Biophys J 72:595 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Andreas Ebner
    • 1
  • Linda Wildling
    • 1
  • Rong Zhu
    • 1
  • Christian Rankl
    • 1
  • Thomas Haselgrübler
    • 1
  • Peter Hinterdorfer
    • 1
  • Hermann J. Gruber
    • 1
    Email author
  1. 1.University of LinzInstitute of BiophysicsLinzAustria

Personalised recommendations