Advertisement

Friction and Surface Dynamics of Polymers on the Nanoscale by AFM

  • Holger SchönherrEmail author
  • Ewa Tocha
  • G. Julius VancsoEmail author
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 285)

Abstract

In this article the measurement and understanding of friction forces and surface dynamics ofpolymers on the one hand and the importance of molecular relaxation processes and viscoelasticityin polymers for advanced micro- and nanoscale applications on the other hand are discussed. Particularattention is paid to the nanoscale (surface) analysis by scanned probe microscopic approaches, includingatomic force microscopy (AFM), as a means to assess molecular relaxation processes that operateat a given temperature. Established AFM approaches, including lateral force and force modulationmicroscopy, are introduced and more recently developed techniques, such as torsional resonant modes,are briefly sketched. On the basis of the discussion of the techniques to measure friction and toprobe surface dynamics of polymers on the nanoscale, illustrative examples are reviewed. The examplesdiscussed address in particular the determination of values of the glass transition temperature (T g) and the difference of T gassessed in the bulk vs. at the free surface of polymers. Confinement and thin film effects on T g, but also on sub-T gtransitions and chain dynamics, are treated in detail. Finally, the mapping of multiphase systemsand anisotropic friction receive attention.

AFM Confinement effects Friction Glass transition temperature Nanotribology Polymer viscoelasticity Thin film effects  

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bhushan B (ed) (1999) Handbook of Micro/Nano Tribology. CRC Press, New York, p 371 Google Scholar
  2. 2.
    Meyer E, Overney RM, Dransfeld K, Gyalog T (1998) Nanoscience: Friction and Rheology on the Nanometer Scale. World Scientific, Singapore Google Scholar
  3. 3.
    Williams ML, Landel RF, Ferry JD (1955) J Am Chem Soc 77:3701 Google Scholar
  4. 4.
    Kato T, Kawaguchi M, Sajjad MM, Choi J (2004) Wear 257:909 Google Scholar
  5. 5.
    Soles CL, Lin EK, Lenhart JL, Jones RL, Wu WL, Goldfarb DL, Angelopoulos M (2001) J Vac Sci Techn B 19:2690 Google Scholar
  6. 6.
    Alcoutlabi M, McKenna GB (2005) J Phys Cond Matter 17:R461 Google Scholar
  7. 7.
    Pfromm PH, Koros WJ (1995) Polymer 36:2379 Google Scholar
  8. 8.
    Despotopoulou MM, Frank CW, Miller RD, Rabolt JF (1996) Macromolecules 29:5797 Google Scholar
  9. 9.
    Reiter G (1993) Europhys Lett 23:579 Google Scholar
  10. 10.
    Keddie JL, Jones RAL, Cory RA (1994) Europhys Lett 27:59 Google Scholar
  11. 11.
    Forrest JA, DalnokiVeress K, Stevens JR, Dutcher JR (1996) Phys Rev Lett 77:2002 Google Scholar
  12. 12.
    Roth CB, McNerny KL, Jager WF, Torkelson JM (2007) Macromolecules 40:2568 Google Scholar
  13. 13.
    Jones RAL, Richards RW (1999) Polymers at Surface and Interfaces. Cambridge University Press, Cambridge, UK Google Scholar
  14. 14.
    Sillescu H (1999) J Non-Crystalline Solids 243:81 Google Scholar
  15. 15.
    McClelland GM, Glosli JN (1992) In: Singer IL, Pollock HM (eds) Fundamentals of Friction: Macroscopic and Microscopic Processes. Kluwer, Dordrecht, p 405 Google Scholar
  16. 16.
    Colchero J, Meyer E, Marti O (1999) In: Bhushan B (ed) Handbook of Micro/Nano Tribology. CRC Press, New York, p 273 Google Scholar
  17. 17.
    Johnson KL (1985) Contact Mechanics. Cambridge University Press, Cambridge Google Scholar
  18. 18.
    Carpick RW, Ogletree DF, Salmeron MJ (1999) Coll Interf Sci 211:395 Google Scholar
  19. 19.
    Binnig G, Quate CF, Gerber C (1986) Phys Rev Lett 56:930 Google Scholar
  20. 20.
    Colton R J, Engel A, Frommer J E, Gaub H E, Gewirth A A, Guckenberger R, Rabe J, Heckl W M, Parkinson B (1998) Procedures in Scanning Probe Microscopies. Wiley, New York Google Scholar
  21. 21.
    Carpick RW, Salmeron M (1997) Chem Rev 97:1163 Google Scholar
  22. 22.
    Ferry JD (1980) Viscoelastic Properties of Polymers. Wiley, New York Google Scholar
  23. 23.
    Lutwyche MI, Despont M, Drechsler U, Dürig U, Häberle W, Rothuizen H, Stutz R, Widmer R, Binnig GK, Vettiger P (2000) Appl Phys Lett 77:3299 Google Scholar
  24. 24.
    Dürig U, Cross G, Despont M, Drechsler U, Häberle W, Lutwyche MI, Rothuizen H, Stutz R, Widmer R, Vettiger P, Binnig GK, King WP, Goodson KE (2000) Tribol Lett 9:25 Google Scholar
  25. 25.
    Cagin T, Che JW, Gardos MN, Fijany A, Goddard WA (1999) Nanotechnology 10:278 Google Scholar
  26. 26.
    Granick S, Lin Z, Bae SC (2003) Nature 425:467 Google Scholar
  27. 27.
    Flory PJ (1969) Statistical Mechanics of Chain Molecules. Interscience Publishers, New York Google Scholar
  28. 28.
    Sperling LH (1985) Introduction to Physical Polymer Science. Wiley, New York Google Scholar
  29. 29.
    McCrum NG, Read BE, Williams G (1967) Anelastic and Dielectric Effects in Polymeric Solids. Wiley, London Google Scholar
  30. 30.
    Hammerschmidt JA, Gladfelter WL, Haugstad G (1999) Macromolecules 32:3360 Google Scholar
  31. 31.
    Young RJ, Lovell PA (1991) Introduction to Polymers. Chapman & Hall, London Google Scholar
  32. 32.
    Cherry BW (1981) Polymer Surfaces. Cambridge University Press, Cambridge Google Scholar
  33. 33.
    Grosch KA (1963) Proc R Soc London Ser A—Math Phys Sci 274:21 Google Scholar
  34. 34.
    Ardi MS, Dick W, Kubat J (1993) Coll Polym Sci 271:739 Google Scholar
  35. 35.
    Bergman R, Alvarez F, Alegria A, Colmenero JJ (1998) Chem Phys 109:7546 Google Scholar
  36. 36.
    Sane SB, Knauss WG (2001) Mech Time-Depend Mater 5:293 Google Scholar
  37. 37.
    Sane SB, Knauss WG (2001) Mech Time-Depend Mater 5:325 Google Scholar
  38. 38.
    de Deus JF, Souza GP, Corradini WA, Atvars TDZ, Akcelrud L (2004) Macromolecules 37:6938 Google Scholar
  39. 39.
    Schmidt-Rohr K, Kulik AS, Beckham HW, Ohlemacher A, Pawelzik U, Boeffel C, Spiess W (1994) Macromolecules 27:4733 Google Scholar
  40. 40.
    Dubek G, Lupke T, Stejny J, Alam MA, Arnold M (2000) Macromolecules 33:990 Google Scholar
  41. 41.
    Gedde UW (1999) Polymer Physics. Kluwer Academic Publishers, Dordrecht Google Scholar
  42. 42.
    Israelachvili JN, Berman AD (1999) In: Bhushan B (ed) Handbook of Micro/Nano Tribology. CRC Press, New York, p 371 Google Scholar
  43. 43.
    Homola AM, Israelachvili JN, McGuiggan PM, Gee ML (1990) Wear 136:65 Google Scholar
  44. 44.
    Bowden FP, Tabor D (1966) Brit J Appl Phys 17:1521 Google Scholar
  45. 45.
    Hertz HJ (1882) Reine Angew Math 92:156 Google Scholar
  46. 46.
    Johnson KL (1997) Proc R Soc London Ser A—Math Phys Eng Sci 453:163 Google Scholar
  47. 47.
    Johnson KL (1996) Langmuir 12:4510 Google Scholar
  48. 48.
    Muller V, Derjaguin BV, Toporov YP (1983) Coll Surf 7:251 Google Scholar
  49. 49.
    Derjaguin BV, Muller V, Toporov YP (1980) J Coll Interf Sci 73:293 Google Scholar
  50. 50.
    Derjaguin BV, Muller V, Toporov YP (1978) J Coll Interf Sci 67:378 Google Scholar
  51. 51.
    Derjaguin BV, Muller V, Toporov YP (1978) J Coll Interf Sci 53:314 Google Scholar
  52. 52.
    Maugis DJ (1992) Coll Interf Sci 150:243 Google Scholar
  53. 53.
    Tabor DJ (1977) Coll Interf Sci 58:2 Google Scholar
  54. 54.
    Schwarz UD (2003) J Coll Interf Sci 261:99 Google Scholar
  55. 55.
    Johnson KL (1999) In: Tsukruk VV, Wahl KJ (eds) Microstructure and Microtribology of Polymer Surfaces. ACS Symp Ser Vol 741. American Chemical Society, Washington, p 24 Google Scholar
  56. 56.
    Giri M, Bousfield DB, Unertl WN (2001) Langmuir 17:2973 Google Scholar
  57. 57.
    Hui CY, Baney JM, Kramer EJ (1998) Langmuir 14:6570 Google Scholar
  58. 58.
    Lin YY, Hui CY, Baney JM (1999) J Phys D Appl Phys 32:2250 Google Scholar
  59. 59.
    Lin YY, Hui CY (2002) J Polym Sci B-Polym Phys 40:772 Google Scholar
  60. 60.
    Greenwood JA, Williamson JB (1966) P Proc R Soc London A 295:300 Google Scholar
  61. 61.
    Greenwood JA, Tripp JH (1967) Trans ASME Ser E, J Appl Mech 34:153 Google Scholar
  62. 62.
    Greenwood JA (1967) Trans ASME Ser F, J Lubrication Technol 89:81 Google Scholar
  63. 63.
    Overney R, Meyer E (1993) MRS Bull 18:26 Google Scholar
  64. 64.
    Liu YH, Wu T, Evans DF (1994) Langmuir 10:2241 Google Scholar
  65. 65.
    Perry SS (2004) MRS Bull 29:478 Google Scholar
  66. 66.
    Meyer G, Amer NM (1990) Appl Phys Lett 57:2089 Google Scholar
  67. 67.
    Binggeli M, Christoph R, Hintermann HE (1995) Tribol Lett 1:13 Google Scholar
  68. 68.
    Schwarz UD, Köster P, Wiesendanger R (1996) Rev Sci Instrum 67:2560 Google Scholar
  69. 69.
    Warmack RJ, Zheng XY, Thundat T, Allison DP (1994) Rev Sci Instrum 65:394 Google Scholar
  70. 70.
    Proksch R, Schaffer TE, Cleveland JP, Callahan RC, Viani MB (2004) Nanotechnology 15:1344 Google Scholar
  71. 71.
    D’Costa NP, Hoh JH (1995) Rev Sci Instrum 66:5096 Google Scholar
  72. 72.
    Gibson CT, Watson GS, Myhra S (1997) Wear 213:72 Google Scholar
  73. 73.
    Burnham NA, Chen X, Hodges CS, Matei GA, Thoreson EJ, Roberts CJ, Davies MC, Tendler SJB (2003) Nanotechnology 14:1 Google Scholar
  74. 74.
    Landau LD, Lifshitz EM (1986) Theory of Elasticity, vol 7. Pergamon Press, Oxford Google Scholar
  75. 75.
    Albrecht TR, Akamine S, Carver TE, Quate CF (1990) J Vac Sci Technol A—Vac Surf Films 8:3386 Google Scholar
  76. 76.
    Sader JE (1995) Rev Sci Instr 66:4583 Google Scholar
  77. 77.
    Wortman JJ, Evans RA (1965) J Appl Phys 36:153 Google Scholar
  78. 78.
    Noy A, Frisbie CD, Rozsnyai LF, Wrighton MS, Lieber CM (1995) J Am Chem Soc 117:7943 Google Scholar
  79. 79.
    Kiesewetter L, Zhang JM, Houdeau D, Steckenborn A (1992) Sens Actuator A—Phys 35:153 Google Scholar
  80. 80.
    Schneider D, Tucker MD (1996) Thin Solid Films 291:305 Google Scholar
  81. 81.
    Levy R, Maaloum M (2002) Nanotechnology 13:33 Google Scholar
  82. 82.
    Ma HL, Jimenez J, Rajagopalan R (2000) Langmuir 16:2254 Google Scholar
  83. 83.
    Butt HJ, Jaschke M (1995) Nanotechnology 6:1 Google Scholar
  84. 84.
    Tortonese M, Kirk M (1997) Proc SPIE 3009:53 Google Scholar
  85. 85.
    Cleveland JP, Manne S, Bocek D, Hansma PK (1993) Rev Sci Instrum 64:403 Google Scholar
  86. 86.
    Buenviaje CK, Ge SR, Rafailovich MH, Overney RM (1998) Mat Res Soc Symp Proc 522:187 Google Scholar
  87. 87.
    Liu E, Blanpain B, Celis JP (1996) Wear 192:141 Google Scholar
  88. 88.
    Feiler A, Attard P, Larson I (2000) Rev Sci Instrum 71:2746 Google Scholar
  89. 89.
    Ogletree DF, Carpick RW, Salmeron M (1996) Rev Sci Instrum 67:3298 Google Scholar
  90. 90.
    Varenberg M, Etsion I, Halperin G (2003) Rev Sci Instrum 74:3362 Google Scholar
  91. 91.
    Tocha E, Schönherr H, Vancso GJ (2006) Langmuir 22:2340 Google Scholar
  92. 92.
    Tocha E, Stefański T, Schönherr H, Vancso GJ (2005) Rev Sci Instrum 76:083704 Google Scholar
  93. 93.
    Lubben JF, Johannsmann D (2004) Langmuir 20:3698 Google Scholar
  94. 94.
    Mindlin RD (1949) J Appl Mech 16:259 Google Scholar
  95. 95.
    Pietrement O, Beaudoin JL, Troyon M (1999) Tibol Lett 7:213 Google Scholar
  96. 96.
    Sills S, Overney RM (2006) In: Bhushan B, Fuchs H (eds) Applied Scanning Probe Methods III. Springer, Berlin Heidelberg New York, p 83 Google Scholar
  97. 97.
    Kajiyama T, Tanaka K, Ohki I, Ge SR, Yoon JS, Takahara A (1994) Macromolecules 27:7932 Google Scholar
  98. 98.
    Maivald P, Butt H-J, Gould SAC, Prater CB, Drake B, Gurley JA, Elings VB, Hansma PK (1991) Nanotechnology 2:103 Google Scholar
  99. 99.
    Chi L-F, Anders M, Fuchs H, Johnston RR, Ringsdorf H (1993) Science 259:213 Google Scholar
  100. 100.
    Chen JT, Thomas EL (1996) J Mater Sci 31:2531 Google Scholar
  101. 101.
    Anczykowski B, Krüger D, Babcock KL, Fuchs H (1996) Ultramicroscopy 66:251 Google Scholar
  102. 102.
    Jourdan JS, Cruchon-Dupeyrat SJ, Huan Y, Kuo PK, Liu G-Y (1999) Langmuir 15:6495 Google Scholar
  103. 103.
    Burnham NA, Kulik AJ, Gremaud G, Gallo P-J, Oulevey F (1996) J Vac Sci Technol B 14:794 Google Scholar
  104. 104.
    Huang L, Su CM (2004) Ultramicroscopy 100:277 Google Scholar
  105. 105.
    Song YX, Bhushan B (2005) J Appl Phys 97:083533 Google Scholar
  106. 106.
    Reinstadtler M, Kasai T, Rabe U, Bhushan B, Arnold W (2005) J Phys D, Appl Phys R269 Google Scholar
  107. 107.
    Cappella B, Dietler G (1999) Surf Sci Rep 34:1 Google Scholar
  108. 108.
    Butt H-J, Cappella B, Kappl M (2005) Surf Sci Rep 59:1 Google Scholar
  109. 109.
    Tsui OKC, Wang XP, Ho JYL, Ng TK, Xiao X (2000) Macromolecules 33:4198 Google Scholar
  110. 110.
    Cappella B, Kaliappan SK, Sturm H (2005) Macromolecules 38:1874 Google Scholar
  111. 111.
    Binnig G, Despont M, Drechsler U, Haberle W, Lutwyche M, Vettiger P, Mamin HJ, Chui BW, Kenny TW (1999) Appl Phys Lett 74:1329 Google Scholar
  112. 112.
    King WP, Kenny TW, Goodson KE, Cross G, Despont M, Durig U, Rothuizen H, Binnig GK, Vettiger P (2001) Appl Phys Lett 78:1300 Google Scholar
  113. 113.
    Fischer H (2005) Macromolecules 38:844 Google Scholar
  114. 114.
    Garcia R, Perez R (2002) Surf Sci Rep 47:197 Google Scholar
  115. 115.
    Noy A, Vezenov DV, Lieber CM (1997) Annu Rev Mater Sci 27:381 Google Scholar
  116. 116.
    Vancso GJ, Hillborg H, Schönherr H (2005) Adv Polym Sci 182:55 Google Scholar
  117. 117.
    Sinniah SK, Steel AB, Miller CJ, ReuttRobey JE (1996) J Am Chem Soc 118:8925 Google Scholar
  118. 118.
    Feldman K, Tervoort T, Smith P, Spencer ND (1998) Langmuir 14:372 Google Scholar
  119. 119.
    Werts MPL, Van der Vegte EW, Grayer V, Esselink E, Tsitsilianis C, Hadziioannou G (1998) Adv Mater 10:452 Google Scholar
  120. 120.
    Lee WK (1999) Polymer 40:5631 Google Scholar
  121. 121.
    Cappella B, Kaliappan SK (2006) Macromolecules 39:9243 Google Scholar
  122. 122.
    Satomi N, Tanaka K, Takahara A, Kajiyama T (2001) Macromolecules 34:6420 Google Scholar
  123. 123.
    Nysten B, Legras R, Costa J-L (1995) J Appl Phys 78:5953 Google Scholar
  124. 124.
    Tomasetti E, Nysten B, Legras R (1998) Nanotechnology 9:305 Google Scholar
  125. 125.
    Nysten B, Meerman C, Tomasetti E (1999) In: Tsukruk VV, Wahl KJ (eds) Microstructure and Microtribology of Polymer Surfaces. ACS Symp Ser Vol 741. American Chemical Society, Washington, p 304 Google Scholar
  126. 126.
    Cuberes MT, Assender HE, Briggs GAD, Kolosov OV (2000) J Phys D, Appl Phys 33:2347 Google Scholar
  127. 127.
    Oulevey F, Burnham NA, Gremaud G, Kulik AJ, Pollock HM, Hammiche A, Reading M, Song M, Hourston DJ (2000) Polymer 41:3087 Google Scholar
  128. 128.
    Ellison CJ, Torkelson JM (2003) Nature Mater 2:695 Google Scholar
  129. 129.
    Priestley RD, Ellison CJ, Broadbelt LJ, Torkelson JM (2005) Science 309:456 Google Scholar
  130. 130.
    Tomczak N, Vallee RAL, van Dijk EMHP, Kuipers L, van Hulst NF, Vancso GJ (2004) J Am Chem Soc 126:4748 Google Scholar
  131. 131.
    Pu Y, Ge SR, Rafailovich M, Sokolov J, Duan Y, Pearce E, Zaitsev V, Schwarz S (2001) Langmuir 17:5865 Google Scholar
  132. 132.
    Sills S, Gray T, Overney RM (2005) J Chem Phys 123:134902 Google Scholar
  133. 133.
    Sills S, Overney RM (2003) Phys Rev Lett 91:095501 Google Scholar
  134. 134.
    Kaliappan SK, Cappella B (2005) Polymer 46:11416 Google Scholar
  135. 135.
    Bliznyuk VN, Assender HE, Briggs GAD (2002) Macromolecules 35:6613 Google Scholar
  136. 136.
    Tanaka K, Takahara A, Kajiyama T (1997) Macromolecules 30:6626 Google Scholar
  137. 137.
    Kajiyama T, Tanaka K, Takahara A (1997) Macromolecules 30:280 Google Scholar
  138. 138.
    Kajiyama T, Tanaka K, Takahara A (1998) Polymer 39:4665 Google Scholar
  139. 139.
    Satomi N, Tanaka K, Takahara A, Kajiyama T, Ishizone T, Nakahama S (2001) Macromolecules 34:8761 Google Scholar
  140. 140.
    Kajiyama T, Tanaka K, Takahara A (2004) J Polym Sci Polym Chem 42:639 Google Scholar
  141. 141.
    Tanaka K, Hashimoto K, Kajiyama T, Takahara A (2003) Langmuir 19:6573 Google Scholar
  142. 142.
    Briscoe B, Smith AC (1982) J Phys D: Appl Phys 15:579 Google Scholar
  143. 143.
    Hammerschmidt JA, Moasser B, Gladfelter WL, Haugstad G, Jones RR (1996) Macromolecules 29:8996 Google Scholar
  144. 144.
    Tocha E, Schönherr H, Vancso GJ (2007) (submitted) Google Scholar
  145. 145.
    Schmidt M, Maurer FHJ (2000) Macromolecules 33:3879 Google Scholar
  146. 146.
    Dinelli F, Buenviaje C, Overney RM (2000) J Chem Phys 113:2043 Google Scholar
  147. 147.
    Ge S, Pu Y, Zhang W, Rafailovich M, Sokolov J, Buenviaje C, Buckmaster R, Overney RM (2000) Phys Rev Lett 85:2340 Google Scholar
  148. 148.
    Schmidt RH, Haugstad G, Gladfelter WL (2003) Langmuir 19:10390 Google Scholar
  149. 149.
    Schmidt RH, Haugstad G, Gladfelter WL (1999) Langmuir 15:317 Google Scholar
  150. 150.
    Gracias DH, Zhang D, Lianos L, Ibach W, Shen YR, Somorjai GA (1999) Chem Phys 245:277 Google Scholar
  151. 151.
    Mansfield KF, Theodorou DN (1991) Macromolecules 24:6283 Google Scholar
  152. 152.
    Haugstad G, Gladfelter WL, Weberg EB, Weberg RT, Jones RR (1995) Langmuir 11:3473 Google Scholar
  153. 153.
    Wang XP, Tsui OKC, Xiao XD (2002) Langmuir 18:7066 Google Scholar
  154. 154.
    Sills S, Overney RM, Chau W, Lee VY, Miller RD, Frommer J (2004) J Chem Phys 120:5334 Google Scholar
  155. 155.
    Sutton SJ, Izumi K, Miyaji H, Miyamoto Y, Miyashita S (1997) J Mater Sci 32:5621 Google Scholar
  156. 156.
    Schönherr H, Frank CW (2003) Macromolecules 36:1199 Google Scholar
  157. 157.
    Meuse CW, Yang XZ, Yang DC, Hsu SL (1992) Macromolecules 25:925 Google Scholar
  158. 158.
    Tao HJ, Meuse CW, Yang XZ, Macknight WJ, Hsu SL (1994) Macromolecules 27:7146 Google Scholar
  159. 159.
    Krausch G, Dai CA, Kramer EJ, Marko JF, Bates FS (1993) Macromolecules 26:5566 Google Scholar
  160. 160.
    Fasolka MJ, Banerjee P, Mayes AM, Pickett G, Balazs AC (2000) Macromolecules 33:5702 Google Scholar
  161. 161.
    Fryer DS, Nealey PF, de Pablo JJ (2000) Macromolecules 33:6439 Google Scholar
  162. 162.
    Akabori K, Tanaka K, Kajiyama T, Takahara A (2003) Macromolecules 36:4937 Google Scholar
  163. 163.
    Forrest JA, DalnokiVeress K, Dutcher JR (1997) Phys Rev E 56:5705 Google Scholar
  164. 164.
    Overney RM, Buenviaje C, Luginbuhl R, Dinelli F (2000) J Therm Anal 59:205 Google Scholar
  165. 165.
    Wang D, Ishida H (2006) CR Chimie 9:90 Google Scholar
  166. 166.
    Wang XP, Xiao XD, Tsui OKC (2001) Macromolecules 34:4180 Google Scholar
  167. 167.
    Pickering JP, Vancso GJ (1999) Appl Surf Sci 148:147 Google Scholar
  168. 168.
    Hirano M, Shinjo K (1993) Wear 168:121 Google Scholar
  169. 169.
    Sasaki N, Tsukada M, Fujisawa S, Sugawara Y, Morita S, Kobayashi K (1998) Phys Rev B 57:3785 Google Scholar
  170. 170.
    Vancso GJ, Förster S, Leist H (1996) Macromolecules 29:2158 Google Scholar
  171. 171.
    Vancso GJ, Förster S, Leist H, Liu G, Trifonova D (1996) Trib Lett 2:231 Google Scholar
  172. 172.
    Schönherr H, Vancso GJ (1997) Macromolecules 30:6391 Google Scholar
  173. 173.
    Israelachvili JN, Chen Y-L, Yoshizawa H (1995) In: Rimai DS, DeMejo LP, Mittal KL (eds) Fundamentals of Adhesion and Interfaces. VSP, Utrecht, p 261 Google Scholar
  174. 174.
    Vancso GJ, Schönherr H (1999) In: Tsukruk VV, Wahl KJ (eds) Microstructure and Microtribology of Polymer Surfaces. ACS Symp Ser Vol 741. American Chemical Society, Washington, p 317 Google Scholar
  175. 175.
    Overney RM, Takano H, Fujihira M, Paulus W, Ringsdorf H (1994) Phys Rev Lett 72:3546 Google Scholar
  176. 176.
    Schönherr H, Kenis PJA, Engbersen JFJ, Harkema S, Hulst R, Reinhoudt DN, Vancso GJ (1998) Langmuir 14:2801 Google Scholar
  177. 177.
    Liley M, Gourdon D, Stamou D, Meseth U, Fischer TM, Lautz C, Stahlberg H, Vogel H, Burnham NA, Duschl C (1998) Science 280:273 Google Scholar
  178. 178.
    Nisman R, Smith P, Vancso GJ (1994) Langmuir 10:1667 Google Scholar
  179. 179.
    Smith PF, Nisman R, Ng C, Vancso GJ (1994) Polym Bull 33:459 Google Scholar
  180. 180.
    Vancso GJ, Nisman R, Snétivy D, Schönherr H, Smith P, Ng C, Yang H (1994) Coll Surf A 87:263 Google Scholar
  181. 181.
    Sills S, Overney RM, Gotsmann B, Frommer J (2005) Tribol Lett 19:9 Google Scholar
  182. 182.
    Urbakh M, Klafter J, Gourdon D, Israelachvili J (2004) Nature 430:525 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.MESA+ Institute for Nanotechnology and Faculty of Scienceand TechnologyUniversity of Twente, Department of Materials Science and Technology of PolymersAE EnschedeThe Netherlands

Personalised recommendations