Advertisement

Molecular Workbench for Imaging and Manipulation of Single Macromolecules and Their Complexes with the Scanning Force Microscope

  • Jürgen P. RabeEmail author
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 285)

Abstract

The structure and properties of single macromolecules are key to understanding function in biologicalmolecular systems, as well as to developing artificial functional systems. In order to systematicallyinvestigate and control the conformations of single macromolecules and their complexes a “molecularworkbench” has been developed. It consists of an atomically flat, inert solid substrate suchas the basal plane of highly oriented pyrolytic graphite (HOPG), coated with a layer of moleculessuch as alkanes or alkyl chains containing amphiphiles that control the interaction between the substrateand adsorbed macromolecules. A scanning force microscope (SFM) operated in tapping or contactmode is used to both image and manipulate the macromolecules to correlate their structure with mechanicalproperties, and to assemble macromolecular systems that would not form spontaneously.

Conformation Interface Manipulation Scanning force microscopy Single macromolecules  

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rivetti C, Guthold M, Bustamante C (1996) J Mol Biol 264:919 CrossRefGoogle Scholar
  2. 2.
    Rabe JP (1998) Curr Opin Coll Int Sci 3:27–31 CrossRefGoogle Scholar
  3. 3.
    Schlüter AD, Rabe JP (2000) Angew Chem 112:860–880 CrossRefGoogle Scholar
  4. 4.
    Schlüter AD, Rabe JP (2000) Angew Chem Int Ed 39:864–883 CrossRefGoogle Scholar
  5. 5.
    Sheiko SS, Möller M (2001) Chem Rev 101:4099–4123 CrossRefGoogle Scholar
  6. 6.
    Samorí P, Ecker C, Gössl I, De Witte PAJ, Cornelissen JJJM, Metselaar G, Otten MBJ, Rowan AE, Nolte RJM, Rabe JP (2002) Macromolecules 35:5290–5294 CrossRefGoogle Scholar
  7. 7.
    Kurth DG, Severin N, Rabe JP (2002) Angew Chem Int Ed 41:3681–3683 CrossRefGoogle Scholar
  8. 8.
    Cacialli F, Wilson JS, Michels JJ, Daniel C, Silva C, Friend RH, Severin N, Samorì P, Rabe JP, O’Connell MJ, Taylor PN, Anderson HL (2002) Nat Mater 1:160–164 CrossRefGoogle Scholar
  9. 9.
    Shu L, Gössl I, Rabe JP, Schlüter AD (2002) Macromol Chem Phys 203:2540–2550 CrossRefGoogle Scholar
  10. 10.
    Gössl I, Shu L, Schlüter AD, Rabe JP (2002) J Am Chem Soc 124:6860–6865 CrossRefGoogle Scholar
  11. 11.
    Gössl I, Shu L, Schlüter AD, Rabe JP (2002) Single Mol 3:5–6 CrossRefGoogle Scholar
  12. 12.
    Gössl I, Shu L, Schlüter AD, Rabe JP (2002) Single Mol 3:315–316 CrossRefGoogle Scholar
  13. 13.
    Otten MBJ, Ecker C, Metselaar GA, Rowan AE, Nolte RJM, Samorì P, Rabe JP (2004) Chem Phys Chem 5:128–130 CrossRefGoogle Scholar
  14. 14.
    Severin N, Rabe JP, Kurth DG (2004) J Am Chem Soc 126:3696–3697 CrossRefGoogle Scholar
  15. 15.
    Ecker C, Severin N, Shu L, Schlüter AD, Rabe JP (2004) Macromolecules 37:2484–2489 CrossRefGoogle Scholar
  16. 16.
    Zhang A, Barner J, Gössl I, Rabe JP, Schlüter AD (2004) Angew Chem 43:5185–5188 CrossRefGoogle Scholar
  17. 17.
    Zhuang W, Ecker C, Metselaar GA, Rowan AE, Nolte RJM, Samorí P, Rabe JP (2005) Macromolecules 38:473–480 CrossRefGoogle Scholar
  18. 18.
    Böttcher C, Schade B, Ecker C, Rabe JP, Shu L, Schlüter AD (2005) Chem Eur J 11:2923–2928 CrossRefGoogle Scholar
  19. 19.
    Kasëmi E, Zhuang W, Rabe JP, Fischer K, Schmidt M, Colussi M, Keul H, Ding YI, Cölfen H, Schlüter AD (2006) J Am Chem Soc 128:5091–5099 CrossRefGoogle Scholar
  20. 20.
    Severin N, Okhapkin IM, Khokhlov AR, Rabe JP (2006) Nano Lett 6:1018–1022 CrossRefGoogle Scholar
  21. 21.
    Jahnke E, Lieberwirth I, Severin N, Rabe JP, Frauenrath H (2006) Angew Chem 118:5510–5513 CrossRefGoogle Scholar
  22. 22.
    Jahnke E, Lieberwirth I, Severin N, Rabe JP, Frauenrath H (2006) Angew Chem Int Ed 45:5383–5386 CrossRefGoogle Scholar
  23. 23.
    Jahnke E, Millerioux A-S, Severin N, Rabe JP, Frauenrath H (2007) Macromol Biosci 7:136–143 CrossRefGoogle Scholar
  24. 24.
    Jahnke E, Severin N, Kreutzkamp P, Rabe JP, Frauenrath H (2008) Adv Mater 20:409–414 CrossRefGoogle Scholar
  25. 25.
    Shu L, Schlüter AD, Ecker C, Severin N, Rabe JP (2001) Angew Chem 113:4802–4805 CrossRefGoogle Scholar
  26. 26.
    Shu L, Schlüter AD, Ecker C, Severin N, Rabe JP (2001) Angew Chem Int Ed 40:4666–4669 CrossRefGoogle Scholar
  27. 27.
    Severin N, Barner J, Kalachev A, Rabe JP (2004) Nano Lett 4:577–579 CrossRefGoogle Scholar
  28. 28.
    Severin N, Zhuang W, Ecker C, Kalachev AA, Sokolov IM, Rabe JP (2006) Nano Lett 6:2561–2566 CrossRefGoogle Scholar
  29. 29.
    Barner J, Mallwitz F, Shu L, Schlüter AD, Rabe JP (2003) Angew Chem 115:1976–1979 CrossRefGoogle Scholar
  30. 30.
    Barner J, Mallwitz F, Shu L, Schlüter AD, Rabe JP (2003) Angew Chem Int Ed 42:1932–1935 CrossRefGoogle Scholar
  31. 31.
    Al-Hellani R, Barner J, Rabe JP, Schlüter AD (2006) Chem Eur J 12:6542–6551 CrossRefGoogle Scholar
  32. 32.
    Stocker W, Schumacher M, Graff S, Thierry A, Wittmann JC, Lotz B (1998) Macromolecules 31:807–814 CrossRefGoogle Scholar
  33. 33.
    Kajitani T, Okoshi K, Sakurai S-I, Kumaki J, Yashima E (2006) J Am Chem Soc 128:708–709 CrossRefGoogle Scholar
  34. 34.
    Kumaki J, Kawauchi T, Okoshi K, Kusanagi H, Yashima E (2007) Angew Chem Int Ed 46:5348–5351 CrossRefGoogle Scholar
  35. 35.
    Seebeck FP, Woycechowsky KJ, Zhuang W, Rabe JP, Hilvert D (2006) J Am Chem Soc 128:4516–4517 CrossRefGoogle Scholar
  36. 36.
    Grosberg AY, Khokhlov AR (1994) Statistical Physics of Macromolecules. AIP, Woodbury Google Scholar
  37. 37.
    Ecker C (2005) Conformations of single polymer chains on surfaces – non-equilibrium, equilibrium and manipulation. Dissertation, Humboldt University Berlin, http://edoc.hu-berlin.de Google Scholar
  38. 38.
    Samorì P, Francke V, Mangel T, Müllen K, Rabe JP (1998) Opt Mater 9:390–393 CrossRefGoogle Scholar
  39. 39.
    Samorì P, Francke V, Müllen K, Rabe JP (1998) Thin Solid Films 336:13–15 CrossRefGoogle Scholar
  40. 40.
    Samorì P, Sikharudlidze I, Francke V, Müllen K, Rabe JP (1999) Nanotechnology 10:77–80 CrossRefGoogle Scholar
  41. 41.
    Samorì P, Francke V, Müllen K, Rabe JP (1999) Chem Eur J 5:2312–2317 CrossRefGoogle Scholar
  42. 42.
    Schnablegger H, Antonietti M, Göltner C, Hartmann J, Cölfen H, Samorì P, Rabe JP, Häger H, Heitz W (1999) J Coll Int Sci 212:24–32 CrossRefGoogle Scholar
  43. 43.
    Stocker W, Schürmann BL, Rabe JP, Förster S, Lindner P, Neubert I, Schlüter A-D (1998) Adv Mater 10:793–797 CrossRefGoogle Scholar
  44. 44.
    Stocker W, Karakaya B, Schürmann BL, Rabe JP, Schlüter A-D (1998) J Am Chem Soc 120:7691–7695 CrossRefGoogle Scholar
  45. 45.
    Hentschke R, Schürmann BL, Rabe JP (1992) J Chem Phys 96:6213–6221 CrossRefGoogle Scholar
  46. 46.
    Hentschke R, Schürmann BL, Rabe JP (1993) J Chem Phys 98:1756–1757 CrossRefGoogle Scholar
  47. 47.
    Jun H, Yi Z, Haibin G, Minqian L, Hartman U (2002) Nano Lett 2:55–57 CrossRefGoogle Scholar
  48. 48.
    Rabe JP, Buchholz S (1991) Science 253:424–427 CrossRefGoogle Scholar
  49. 49.
    Cincotti S, Rabe JP (1993) Appl Phys Lett 62:3531–3533 CrossRefGoogle Scholar
  50. 50.
    Askadskaya L, Rabe JP (1992) Phys Rev Lett 69:1395–1398 CrossRefGoogle Scholar
  51. 51.
    Vanden DA Bout, Yip W-T, Hu D, Fu D-K, Swanger TM, Barbara PF (1997) Science 277:1074–1077 CrossRefGoogle Scholar
  52. 52.
    Jäckel F, De Feyter S, Hofkens J, Köhn F, De Schryver FC, Ego C, Grimsdale A, Müllen K (2002) Chem Phys Lett 26:534–540 CrossRefGoogle Scholar
  53. 53.
    Hamai C, Tanaka H, Kawai T (1999) J Vac Sci Technol B 17:1313–1316 CrossRefGoogle Scholar
  54. 54.
    Stöckle RM, Suh YD, Deckert V, Zenobi R (2000) Chem Phys Lett 318:131–136 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Department of PhysicsHumboldt University BerlinBerlinGermany

Personalised recommendations