Auger recombination in the electron-hole drops IN Si and Ge

  • Klaus Betzler
Electron-hole Drops
Part of the Lecture Notes in Physics book series (LNP, volume 57)


Luminescence measurements on Si and Ge at temperatures of about 1.5 K are presented, which indicate that Auger recombination is the main recombination process inside the electron-hole drops (EHD) in both materials. In silicon a broad spectrum near 2 Eg due to Auger- excited hot electrons could be detected. From its intensity, an Auger lifetime can be derived which corresponds to the total EHD lifetime. In germanium, the evaluation of magnetooscillation in the luminescence intensity yields a quantum efficiency of only 25% and leads to the conclusion that 75% of the carriers inside the EHD recombine in Auger processes.


Luminescence Intensity Radiative Recombination Auger Recombination Luminescence Measurement GaAs Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1).
    See for instance, T. Ohyama, T. Sanada, K. Fujii, E. Otsuka: Proc. X11th Mt. Conf. Phys. Semiconductors, Stuttgart (1974) ed. M. H. Pilkuhn (Teubner, Stuttgart 1974) p.66Google Scholar
  2. 2).
    J. Barrau, J. C. Brabant, M. Brousseau, J. Collet, M. Heckmann, H. Maareff: Solid State Commun. 16 (1975) 1079.Google Scholar
  3. 3).
    C. Benoit à la Guillaume, M. Voos, Y. Petroff: Phys. Rev. B10 (1974) 4995Google Scholar
  4. 4).
    K. Betzler, T. Weller, R. Conradt: Phys. Rev. B6 (1972) 1394.Google Scholar
  5. 5).
    K. Betzler, R. Conradt: Phys. Rev, Letters 28 (1972) 1562.Google Scholar
  6. 6).
    K. Betzler, R. Conradt: Proc. X1th Int. Conf. Phys. Semiconductors, Warsaw (1972) (Elsevier Pub. Co., Amsterdam, 1972) p.684.Google Scholar
  7. 7).
    K. Betzler: Solid State Commun. 15 (1974) 1837.Google Scholar
  8. 8).
    E. M. Conwell: High Field Transport in Semiconductors; Solid State Physics Suppl. Vol. 9 (Academic Press, N. Y., 1967)Google Scholar
  9. 9).
    E. M. Conwell: Phys. Rev. 135 A (1964) 1138Google Scholar
  10. 10).
    M. H. Jørgensen, N. O. Gram, N. I. Meyer: Solid State Commun. 10 (1972) 337.Google Scholar
  11. 11).
    W. Gerlach, H. Schlangenotto, H. Maeder: Phys. Stat. sol. (a) 13 (1972) 277.Google Scholar
  12. 12).
    W. C. Dash, R. Newman: Phys. Rev. 99 (1955) 1151.Google Scholar
  13. 13).
    J. D. Beck, R. Conradt: Solid State Commun. 13 (1973) 93.Google Scholar
  14. 14).
    J. D. Cuthbert: Phys. Rev. B1 (1970) 1552.Google Scholar
  15. 15).
    W. Zeh, K. Betzler, R. Conradt: Solid State Commun. 14 (1974) 967.Google Scholar
  16. 16).
    L. V. Keldysh, A. P. Silin: Fiz. Tverd. Tela 15 (1973) 1532.Google Scholar
  17. 17).
    K. Betzler, B. G. Zhurkin, A. L. Karuzskii, B. M. Balter: P.N. Lebedev Physical Institute Preprint No. 71, Moscow 1975Google Scholar
  18. 18).
    C. Benoit à la Guillaume, M. Voos, F. Salvan: Phys. Rev. Letters 27 (1971) 1214.Google Scholar
  19. 19).
    Ya. E. Pokrovskii, K. I. Svistunova: Fiz. Tehk. Poluprov. 4 (1970) 491.Google Scholar
  20. 20).
    R. M. Westervelt, T. K. Lo, J. L. Staehli, C. D. Jeffries: Phys. Rev. Letters 32 (1974) 1051.Google Scholar
  21. 21).
    W. Michaelis, M. H. Pilkuhn: Phys. Stat. sol. 3b (1969) 311.Google Scholar
  22. 22).
    R. Conradt, J. Aengenheister: Solid State Commun. 10 (1972) 321.Google Scholar
  23. 23).
    P. Vashishta, P. Bhattacharya, K. S. Singwi: Phys. Rev. B10 (1974) 5108.Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Klaus Betzler
    • 1
  1. 1.Universität OsnabrückGermany

Personalised recommendations