Advertisement

Composite particles and symplectic (SEMI-) groups

  • P. Kramer
Invited Lectures C. Symplectic Structures and Many-Body Physics
  • 177 Downloads
Part of the Lecture Notes in Physics book series (LNP, volume 79)

References

  1. /1/.
    A. Bohr and B. R. Mottelson, Nuclear Structure, vol. 1 New York 1969, vol. 2 Reading 1975Google Scholar
  2. /2/.
    K. Wildermuth and Y. C. Tang, A Unified Theory of the Nucleus, Braunschweig 1977Google Scholar
  3. /3/.
    D. M. Brink and A. Weiguny, Nucl. Phys. A120, 59 (1968)Google Scholar
  4. /4/.
    Nuclear Spectroscopy and Nuclear Reactions with Heavy Ions, ed. by H. Faraggi and R. A. Ricci, New York 1976Google Scholar
  5. /5/.
    A. Grossmann, Geometry of Real and Complex Canonical Transformations, Proc. VI. Int. Coll. Group Theoretical Methods in Physics, Tübingen 1977Google Scholar
  6. /6/.
    S. Sternberg, Metaplectic Structures, Proc. VI. Int. Coll. Group Theoretical Methods in Physics, Tübingen 1977Google Scholar
  7. /7/.
    P. Kramer, M. Moshinsky and T. H. Seligman, Complex Extension of Canonical Transformations in Quantum Mechanics, in: Group Theory and its Applications III, ed. by E. M. Loebl, New York 1975Google Scholar
  8. /8/.
    P. Kramer, G. John and D. Schenzle, to be publishedGoogle Scholar
  9. /9/.
    M. Moshinsky, J. Math. Phys. 4, 1128 (1963)Google Scholar
  10. /10/.
    P. Kramer and T. H. Seligman, Nucl.Phys. A123, 161 (1969); Nucl. Phys. A136, 545 (1969); Nucl.Phys. A186, 49 (1972)Google Scholar
  11. /11/.
    J. D. Louck, Amer. J. Phys. 38, 3 (1970)Google Scholar
  12. /12/.
    J. G. Nagel and M. Moshinsky, J. Math. Phys. 6, 682 (1965)Google Scholar
  13. /13/.
    V. Bargmann, Group Representations in Hilbert Spaces of Analytic Functions, in: Analytic Methods in Mathematical Physics, ed. by R. P. Gilbert and R. G. Newton, New York 1968Google Scholar
  14. /14/.
    M. Moshinsky and C. Quesne, J. Math. Phys. 14, 692 (1973)Google Scholar
  15. /15/.
    P. Kramer and M. Brunet, to be publishedGoogle Scholar
  16. /16/.
    P. Kramer and M. Brunet, Proc. VI. Int. Coll. Group Theoretical Methods in Physics, Nijmegen 1975Google Scholar
  17. /17/.
    P. Kramer and D. Schenzle, Nucl. Phys. A204, 593 (1973), Proc. II. Int. Conf. Clustering Phenomena in Nuclei, College Park, Maryland 1975Google Scholar
  18. /18/.
    P. Kramer and D. Schenzle, Revista Mexicana de Fisica 22, 25 (1973)Google Scholar
  19. /19/.
    M. Harvey, Proc. II. Int. Conf. Clustering Phenomena in Nuclei, College Park, Maryland 1975Google Scholar
  20. /20/.
    D. J. Rowe, The Nuclear Collective Model and the Symplectic Group, Proc. VI. Int. Coll. Group Theoretical Methods in Physics, Tübingen 1977Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • P. Kramer
    • 1
  1. 1.Institut für Theoretische Physik der Universität TübingenWest Germany

Personalised recommendations